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Abstract Starting from one-range addition theorems for Slater-type functions,
which are expansion in terms of complete and orthonormal functions based on the
generalized Laguerre polynomials, Guseinov constructed addition theorems that are
expansions in terms of Slater-type functions with a common scaling parameter and
integral principal quantum numbers. This was accomplished by expressing the com-
plete and orthonormal Laguerre-type functions as finite linear combinations of Slater-
type functions and by rearranging the order of the nested summations. Essentially,
this corresponds to the transformation of a Laguerre expansion, which in general
only converges in the mean, to a power series, which converges pointwise. Such a
transformation is not necessarily legitimate, and this contribution discusses in detail
the difference between truncated expansions and the infinite series that result in the
absence of truncation.

Keywords Slater-type function · Addition theorem · Laguerre expansion ·
Power series

1 Introduction

Electronic structure theory is a highly interdisciplinary research topic which bene-
fited greatly from interactions with related scientific disciplines. It is generally agreed
that molecular electronic structure calculations only became feasible because of the
spectacular advances in computer hard and software. But we must not forget that
advances in pure and applied mathematics also played a crucial role.
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While mathematicians and theoretical physicists have a venerable tradition of a
close and mutually beneficial collaboration, the same cannot be said about the inter-
action of mathematicians and theoretical chemists (my personal views on this topic
are explained in [208]). This is highly deplorable. Theoretical chemists could—and
should—learn more about new mathematical concepts or powerful numerical tech-
niques. On the other hand, electronic structure theory offers quite a few challenging
mathematical and computational problems which could serve as a valuable source of
inspiration for mathematicians. A more extensive collaboration would certainly be
mutually beneficial (see for example [208, Sect. 8] and references therein).

Advances in mathematics are particularly important for molecular multicenter inte-
grals, which occur in molecular calculations on the basis of the Hartree–Fock–Root-
haan equations [30,136,167] and also in other approximation schemes. The efficient
and reliable evaluation of the three- and six-dimensional molecular integrals, which
are notoriously difficult in the case of the physically better motivated exponentially
decaying basis functions, is one of the oldest mathematical and computational prob-
lems of molecular electronic structure theory. In spite of heroic efforts of numerous
researchers, no completely satisfactory solution has been found yet, and we have to
continue searching for more powerful mathematical and computational techniques. A
review of the older literature can be found in articles by Browne [18], Dalgarno [23],
Harris and Michels [135], and Huzinaga [140].

Quantum mechanics only determines which types of molecular integrals we have
to evaluate, but how we manipulate and ultimately evaluate them is a mathematical
problem. Thus, for a researcher working on multicenter integrals, physical insight and
a good knowledge of quantum mechanics is actually less important than the ability
of skillfully manipulating complicated expressions involving special functions and a
profound knowledge of advanced mathematical techniques with a special emphasis
on numerics.

The evaluation of multicenter integrals is difficult because of the different centers
occurring in their integrands. This effectively prevents the straightforward separation
of the three- and six-dimensional integrals into products of simpler integrals. A prom-
ising computational strategy requires that we find a way of separating the integration
variables at tolerable computational costs.

Principal tools, which can accomplish a separation of integration variables, are so-
called addition theorems. These are special series expansions of a function f (r ± r ′)
with r, r ′ ∈ R

3 in terms of other functions that only depend on either r or r ′. The
basic features of these fairly complicated series expansions are reviewed in Sect. 2. A
much more detailed treatment will be given in my forthcoming review [211].

Infinite series expansions are among the most fundamental mathematical tools with
countless applications not only in mathematics, but also in science and engineering.
Nevertheless, a mathematically rigorous use of infinite series is not necessarily an easy
thing. Many scientists have a highly cavalier attitude when it comes to questions of
existence and convergence. Since mathematics is ultimately used to describe natural
phenomena, it is tempting to believe that nature guarantees that all intermediate math-
ematical manipulations are legitimate. Needless to say that such an attitude is overly
optimistic and can easily have catastrophic consequences.
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Strictly speaking, an infinite series is a meaningless object unless we specify its
convergence type—for example pointwise convergence, convergence in the mean,
or even distributional or weak convergence—and provide convincing evidence that
this series converges according to its specified type of convergence. It is important to
take into account that different convergence types of series expansions imply differ-
ent mathematical properties with different advantages and disadvantages. This applies
also to addition theorems. As discussed in my forthcoming review [211], the different
convergence types of addition theorems may well provide the most useful character-
ization of their properties.

Slater-type functions were originally introduced by Slater [178,179] to provide
computationally convenient analytical approximations to numerically determined
solutions of effective one-particle Schrödinger equations. In unnormalized form, they
can be expressed as follows:

χM
N ,L(β, r) = (βr)N−L−1 e−βr Y M

L (βr) = (βr)N−1 e−βr Y M
L (r/r). (1.1)

Here, β > 0 is a scaling parameter, Y M
L (βr) = (βr)L Y M

L (r/r) is a regular solid har-
monic and Y M

L (r/r) is a surface spherical harmonic (in my own work, I have always
used the phase condition of Condon and Shortley [21, Eqs. (6) and (9) on p. 115]). By
a slight abuse of language, the index N is frequently called principal quantum number.
In most, but not in all cases N is a positive integer satisfying N ≥ L + 1.

Because of the importance of Slater-type functions as basis functions in atomic and
molecular electronic structure calculations, it is not surprising that there is an exten-
sive literature on their notoriously difficult multicenter integrals in general as well as
on their addition theorems in special. A reasonably complete bibliography on their
addition theorems would be beyond the scope of this article. Let me just mention two
classic articles by Barnett and Coulson [6] and by Löwdin [153], respectively, which
have inspired many other researchers.

As discussed in more detail in Sect. 3, Guseinov [41–44,46] derived so-called
one-range addition theorems for Slater-type functions with integral and nonintegral
principal quantum numbers. He expanded Slater-type functions χM

N ,L(β, r ± r ′) in
terms of the functions {k�

m
n,�(γ, r)}n,�,m , which are complete and orthonormal in cer-

tain Hilbert spaces and which are defined in (2.13). The radial parts of these functions
are based on the generalized Laguerre polynomials whose most inportant properties
are reviewed in Appendix D.

On the basis of the approach developed in [41–44,46], Guseinov et al. produced an
amazing number of articles on addition theorems and related topics [40,45,47–49,51–
53,56–74,76–103,107,108,111–119,121–134].

The immediate reason for writing this article is a one-center expansion con-
structed and applied by Guseinov and Mamedov [122]. They expanded a Slater-
type function χM

N ,L(β, r) with an in general nonintegral principal quantum number

N ∈ R\N in terms of Slater-type functions {χM
n,L(γ, r)}∞n=L+1 with integral princi-

pal quantum numbers n ∈ N and an in general different common scaling parameter
γ �= β > 0 [122, Eq. (4)]. This expansion was used by Guseinov and Mamedov for the
construction of what they called series expansions for overlap integrals of Slater-type
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functions with nonintegral principal quantum numbers in terms of overlap integrals
of Slater-type functions with integral principal quantum numbers.

For Guseinov et al., who had done a lot of work on Slater-type functions with nonin-
tegral principal quantum numbers [45,50,52,54,55,61,68,72,75,77,80,82–84,90,91,
93–96,98,102–106,109–117,119–123,131], such an expansion would be extremely
useful: Slater-type functions with nonintegral principal quantum numbers could be
replaced by Slater-type functions with integral principal quantum numbers whose
multicenter integrals can be evaluated (much) more easily.

It is, however, trivially simple to show that such a one-center expansion, which in
my notation can be written as follows,

χM
N ,L(β, r) =

∞∑

n=L+1

X
(N ,L)
n (β, γ ) χM

n,L(γ, r), N ∈ R, (1.2)

only exists if the principal quantum number N is a positive integer satisfying N ≥
L + 1. If N is nonintegral or zero, i.e., if N ∈ R\N, this expansion does not exist.
The nonexistence of this expansion also played a major role in my discussion [207,
Sect. 7] of Guseinov’s treatment of one-range addition theorems for Slater-type func-
tions. However, my discussion in [207, Sect. 7] was incomplete. Its scope is extended
considerably by this article.

From a methodological point of view, we only have to utilize the obvious fact that
an expansion of χM

N ,L(β, r) in terms of Slater-type functions {χM
n,L(γ, r)}∞n=L+1 with

integral principal quantum numbers n and a common scaling parameter γ > 0 is
nothing but a power series expansion of exp(γ r)χM

N ,L(β, r) about r = 0 in disguise.
This interpretation of the expansion (1.2) offers some valuable insight. Relatively little
is known about the convergence and existence of expansions in terms of Slater-type
functions {χM

n,L(γ, r)}n , but it is normally comparatively easy to decide whether such
a corresponding power series expansion about r = 0 exists and for which values of r
it converges.

We can convert the expansion (1.2) to a more transparent one-dimensional radial
problem by canceling the spherical harmonics. Then, the right-hand side of (1.2) can
be converted to a power series in γ r by multiplying either side of (1.2) by exp(γ r):

e(γ−β)r (βr)N−1 =
∞∑

n=L+1

X
(N ,L)
n (β, γ ) (γ r)n−1. (1.3)

Let us now assume that the principal quantum number N is a positive integer satis-
fying N ≥ L + 1. Then we only have to replace the exponential on the left-hand side
of (1.3) by its power series to obtain:

(β/γ )N−1
∞∑

ν=0

[1 − (β/γ )]ν
ν! (γ r)N+ν−1 =

∞∑

n=L+1

X
(N ,L)
n (β, γ )(γ r)n−1. (1.4)
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Comparison of the coefficients of equal powers yields explicit expressions for the
coefficients X

(N ,L)
n (β, γ ).

But if the principal quantum number N is not a positive integer, the matching of
the coefficients of equal powers does not work: On the left-hand side of (1.4) there are
either only nonintegral powers or some negative powers, and on the right-hand side
there are only integral and nonnegative powers. Accordingly, a power series expansion
for e(γ−β)r (βr)N−1 can only exist if N is a positive integer satisfying N ≥ L + 1.

Since every power series is also a Taylor series for some function (see for exam-
ple [155]), the expansion (1.2) can also be derived by doing a Taylor expansion of
exp

(
(γ − β)r)

)
(βr)N−1 about r = 0, yielding the same conclusions. Fractional or

nonintegral powers rα withα ∈ R\N0 and thus also exp([γ−β]r)r N−1 with N ∈ R\N

do not have continuous derivatives of arbitrary order at r = 0. Thus, N ∈ R\N implies
that the leading expansion coefficients X

(N ,L)
n (β, γ ) with indices n ≤ �N	 are zero,

but all the remaining coefficients with indices n > �N	 are infinite in magnitude.
Here, �N	 stands for the integral part of N .

The nonexistence problems mentioned above are a direct consequence of the obvi-
ous fact that the radial part of a Slater-type function with a nonintegral or negative
principal quantum number is not analytic in the sense of complex analysis at r = 0.
This is so elementary that it is hard to understand why nobody had noticed the non-
existence of the expansion (1.2) for N ∈ R\N before.

In spite of the nonexistence of (1.2) for N ∈ R\N, Guseinov and Mamedov [122]
had used their version of this one-center expansion for numerical purposes and pre-
sented apparently meaningful numerical results for overlap and other, closely related
integrals of Slater-type functions with nonintegral principal quantum numbers in [122,
Tables 1 and 2].

If these numerical results are genuine—which I assume—then there is only one log-
ically satisfactory conclusion: Contrary to their claim (see the text before Eq. (4) of
[122]), Guseinov and Mamedov did not use expansions involving an infinite number of
Slater-type functions with integral principal quantum numbers, which—as discussed
above—do not exist for N ∈ R\N. Instead, they only employed some approximations
consisting of a finite number of terms and extrapolated—albeit incorrectly—that these
finite approximations remain meaningful in the limit of an infinite number of terms.

As is well known from the mathematical literature, truncated expansions, which
are approximations consisting of a finite number of terms, may have mathematical
properties that are not at all related to those of a complete expansion consisting of an
infinite number of terms. In particular, it can happen that a truncated expansion can
be mathematically meaningful as well as numerically useful, although its limit as an
expansion of infinite length does not exist (see also Appendix E, where the semicon-
vergence of certain infinite series is reviewed briefly). It is the purpose of this article
to investigate this as well as some closely related question.

The one-center expansion used by Guseinov and Mamedov [122, Eq. (4)] was orig-
inally derived by Guseinov [46, Eq. (21)] as the one-center limit of a class of addition
theorems for Slater-type functions [46, Eq. (15)]. Guseinov’s approach is based on
one-range addition theorems for Slater-type functions, which are expansions in terms
of Guseinov’s Laguerre-type functions {k�

m
n,�(γ, r)}n,�,m . These functions are then
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replaced by Slater-type functions according to (3.2). Ultimately, this yields addition
theorems that are expansions in terms of Slater-type functions with integral principal
quantum numbers. Unfortunately, the derivation of these expansions is fairly difficult
and involves manipulations whose validity is not at all obvious [204,206,207].

In view of the amazing number of articles on addition theorems and related topics
published by Guseinov et al. [40–49,51–53,56–74,76–103,107,108,111–119,121–
134], such an investigation should be of some principal interest.

This article sheds some light on certain more subtle differences of orthogonal and
nonorthogonal expansions which—although in principle known—are often not suf-
ficiently appreciated and taken into account in the literature on electronic structure
calculations.

In Sect. 2, basic features of both one-range and two-range addition theorems are
reviewed. Section 3 discusses Guseinov’s derivation of expansions in terms of Slater-
type functions by rearranging his one-range addition theorems for Slater-type functions
with a special emphasis on numerical stability issues. From a mathematical point of
view, Guseinov’s treatment of addition theorems ultimately boils down to the trans-
formation of a Laguerre series to a power series. The most important properties of this
transformation, whose theory had recently been formulated in [207], are reviewed in
Sect. 4.

The central results of this manuscript are presented in Sects. 5–7. In Sect. 5 it is
shown that the transformation formulas described in Sect. 4 fully explain the nonexis-
tence of Guseinov’s rearrangements of one-center expansions in the case of nonintegral
principal quantum numbers.

In the case of the simpler one-center expansions, which correspond to the Laguerre
series (5.2) for zρ with ρ ∈ R\N0, this analysis had already been done in [207, Sect. 3].
But my results for the more complicated one-center expansions, which correspond to
the Laguerre series (5.1) for zρeuz with ρ ∈ R\N0, are new. In [207, Sect. 7] it was
only stated on the basis of general analyticity principles that the Laguerre series (5.1)
cannot exist if ρ ∈ R\N0, but a detailed analysis of the transformation formulas could
not be done. At that time I did not know yet the large index asymptotics of some special
Gaussian hypergeometric series 2 F1 which were derived in Sect. 5. These asymptotic
expressions make an asymptotic analysis of the transformation formulas possible.

As discussed in more details in Sect. 2, a one-range addition theorem for a func-
tion f (r ± r ′) provides for all arguments r, r ′ ∈ R

3 a unique representation of f in
separated form that is valid for the whole argument set R

3 × R
3. Since the one-cen-

ter limits of Guseinov’s rearranged one-range addition theorems do not exist in the
important special case of nonintegral principal quantum numbers, it was argued in
[207, Sect. 7] that at least some of Guseinov’s rearrangements cannot be one-range
addition theorems. However, the exact nature of Guseinov’s rearrangements was not
yet understood in [207].

Because of technical problems, a straightforward analysis of the transformation
formulas described in Sect. 4 is not possible in the case of Guseinov’s one-range addi-
tion theorems, However, in Sect. 6 it is shown that the rearrangement of Guseinov’s
one-range addition theorems produces two-range addition theorems. This follows at
once from the fact that a Slater-type function χM

N ,L(β, r ± r ′) or equivalently the

function eγ rχM
N ,L(β, r ± r ′) is singular for r ± r ′ = 0.
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Section 7 discusses some numerical implications of the results derived in Sects. 5
and 6. The most important result is that rearrangements of Guseinov’s truncated one-
center expansions are semiconvergent with respect to a variation of the truncation
order if the principal quantum number is nonintegral. This follows from the leading
order asymptotic approximation (7.2).

This article is concluded by a summary and an outlook in Sect. 8. Appendices A–E
review general aspects of series expansions, the largely complementary features of
power series and orthogonal expansions, the for our purposes most important proper-
ties of generalized Laguerre polynomials, and semiconvergent expansions.

2 Basic features of addition theorems

Addition theorems are series expansions of a function f (r ± r ′) with r, r ′ ∈ R
3 in

terms of other functions that depend only on either r or r ′. Because of the complete-
ness and the convenient orthogonality properties of the (surface) spherical harmonics
Y m
� (θ, φ), it is customary to express the angular parts of addition theorems in terms of

spherical harmonics whose arguments correspond to the solid angles r/r and r ′/r ′,
respectively.

In atomic and molecular electronic structure theory, we are predominantly inter-
ested in addition theorems for functions

Fm
� (r) = f�(r) Y m

� (r/r), (2.1)

which can be factored into a radial part f�(r) multiplied by a surface spherical har-
monic. In the language of angular momentum theory, such a function Fm

� (r) is an
irreducible spherical tensor with a fixed rank � ∈ N0.

The best known and probably also the most simple addition theorem of such an irre-
ducible spherical tensor is the Laplace expansion of the Coulomb or Newton potential
1/|r ± r ′|. As discussed in Hobson’s classic book [138, §11 on pp. 16–17], the math-
ematical tools needed for the construction of this addition theorem were developed
by Laplace and Legendre already in the late 18th century. In modern notation, the
Laplace expansion can be expressed as follows:

1

|r ± r ′| = 4π
∞∑

λ=0

(∓1)λ

2λ+ 1

rλ<
rλ+1
>

λ∑

μ=−λ

[
Yμλ (r</r<)

]∗
Yμλ (r>/r>),

|r<| = min(r, r ′), |r>| = max(r, r ′). (2.2)

The Laplace expansion is the simplest prototype for a large class of addition theo-
rems that possess a characteristic two-range form. Numerous techniques for the deri-
vation of two-range addition theorems are described in the literature. With the possible
exception of the so-called Fourier transform method advocated almost simultaneously
but independently by Ruedenberg [168] and Silverstone [177], they are all related to
power series expansions in one way or the other.
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For example, the Laplace expansion (2.2) can be derived easily with the help of the
generating function of the Legendre polynomials Pn(x) [154, p. 232]:

[
1 − 2xt + t2]−1/2 =

∞∑

n=0

Pn(x) tn, −1 < x < 1, |t | < 1. (2.3)

Obviously, this generating function is nothing but a power series expansion about
t = 0. For the derivation of the Laplace expansion (2.2), we only need the so-called
spherical harmonic addition theorem (see for example [191, Eq. (1.2-3a)])

P�(cos θ) = 4π

2�+ 1

�∑

m=−�

[
Y m
� (u/u)

]∗
Y m
� (v/v), cos θ = u · v

uv
. (2.4)

The two-range form of the Laplace expansion (2.2) is necessary to ensure conver-
gence, because the generating function (2.3) converges only for |t | < 1. Thus, the
Laplace expansion converges pointwise for r</r> < 1 and diverges for r</r> > 1.

The use of generating functions of the Gegenbauer polynomials, which general-
ize the generating function (2.3) of the Legendre polynomials, for the construction
of addition theorems of spherically symmetric functions will be discussed briefly in
Sect. 6. The two-range forms of these addition theorems follow from the convergence
conditions of the corresponding generating functions which are nothing but special
power series expansions, usually in the variable r/r ′ or more precisely in r</r>.

The most principal approach for the construction of pointwise convergent addition
theorems consists in interpreting such an addition theorem as a three-dimensional
Taylor expansion (see for example [12, p. 181]):

f (r ± r ′) =
∞∑

n=0

(r · ∇′)n

n! f (±r ′) = er·∇′
f (±r ′). (2.5)

Thus, the translation operator er·∇′ = ex∂/∂x ′
ey∂/∂y′

ez∂/∂z′
generates f (r ± r ′) by

constructing a three-dimensional Taylor expansion of f about ±r ′ with shift vector
r . Since the variables r and r ′ are separated, the series expansion (2.5) is indeed an
addition theorem.

Of course, the series expansion (2.5) tacitly assumes that f (±r ′) possesses con-
tinuous derivatives of arbitrary order with respect to the Cartesian components of its
argument ±r ′ = ±(x ′, y′, z′). Thus, f has to be analytic at ±r ′, which guarantees that
the series expansion (2.5) converges at least for sufficiently small |r| > 0. Eventual
singularities of f determine for which values of the shift vector r the three-dimensional
Taylor expansion (2.5) converges.

We could also expand f about r and use ±r ′ as the shift vector. This would produce
an addition theorem for f (r ±r ′) in which the roles of r and r ′ are interchanged. Both
approaches are mathematically legitimate and equivalent if f is analytic at r, r ′, and
r ± r ′ for essentially arbitrary vectors r, r ′ ∈ R

3. This is normally not true. Many of
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the functions, that are of interest in the context of molecular electronic structure calcu-
lations, have a singularity at the origin. Obvious examples are the Coulomb potential,
which has a pole at the origin, or the commonly used exponentially decaying func-
tions as for example Slater-type functions, which have a branch point singularity at
the origin.

Accordingly, for the addition theorem of a function f (r ± r ′), which is singular for
r ± r ′ = 0, the natural variables are not r and r ′, but the vectors r< and r> satisfying
|r<| = min(r, r ′) and r>| = max(r, r ′). This implies that the expansion formula (2.5)
should be rewritten as follows:

f (r< ± r>)=
∞∑

n=0

(r< · ∇>)n
n! f (±r>)= er<·∇> f (±r>). (2.6)

In this way, the convergence of the three-dimensional Taylor expansion is guaranteed
provided that f is analytic everywhere with the possible exception of the origin.

From a practical point of view, the translation operator er<·∇> does not seem to
be a particularly useful analytical tool. In electronic structure theory, we are usually
interested in addition theorems of irreducible spherical tensors of the type of (2.1),
which are defined in terms of the spherical polar coordinates r, θ , and φ. Differenti-
ating such an irreducible spherical tensor with respect to the Cartesian components of
r> = (x>, y>, z>)would lead to extremely messy expressions and to difficult techni-
cal problems. Thus, it is a seemingly obvious conclusion that the translation operator
er<·∇> only provides a formal solution to the problem of separating the variables r<
and r> of a function f (r> ± r>). Nevertheless, this conclusion is wrong.

The crucial step, which ultimately makes the Taylor expansion method practically
useful, is the expansion of the translation operator er<·∇> in terms of differential
operators that are irreducible spherical tensors with a fixed rank � ∈ N0:

er<·∇> = 2π
∞∑

�=0

�∑

m=−�

[
Y m
� (r<)

]∗
Y m
� (∇>)

∞∑

k=0

r2k
< ∇2k

>

2�+2kk!(1/2)�+k+1
. (2.7)

Here, Y m
� (∇) is the so-called spherical tensor gradient operator which is obtained

by replacing the Cartesian components of r = (x, y, z) by the Cartesian compo-
nents of ∇ = (∂/∂x∂/∂y, ∂/∂z) in the explicit expression of the solid harmonic
Y m
� (r) = r�Y m

� (r/r) which is a homogeneous polynomial of degree �. More details
as well as numerous references can be found in [202, Sect. 2].

It seems that the expansion (2.7) was first published by Santos [173, Eq. (A.6)],
who emphasized that this expansion should be useful for the derivation of addition
theorems, but he apparently never used it for that purpose.

In [199,201] or in [202, Sect. 7] it was shown that two-range addition theorems
of irreducible spherical tensors are nothing but rearranged three-dimensional Taylor
expansions about ±r> with shift vector r<. Such an expansion converges pointwise
and uniformly in the interior of suitable subsets of R

3 × R
3 whose boundaries are

defined by the singularities of the function which is to be expanded. If the function
under consideration has a singularity for r ±r ′ = 0, the two-range form of its addition
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theorem is necessary to guarantee pointwise or even uniform convergence in a suitable
neighborhood of the expansion point.

There is a different class of addition theorems based on Hilbert space theory. Let us
assume that {ϕm

n,�(r)}n,�,m is a complete and orthonormal function set in the Hilbert
space

L2(R3) =
{

f : R
3 → C

∣∣∣∣
∫

| f (r)|2 d3r < ∞
}

(2.8)

of functions that are square integrable with respect to an integration over the whole
R

3. Since any f ∈ L2(R3) can be expanded in terms of the complete and orthonormal
functions {ϕm

n,�(r)}n,�,m , a one-range addition theorem for f (r±r ′) can be formulated
as follows:

f (r ± r ′) =
∑

n�m

Cm
n,�( f ;±r ′) ϕm

n,�(r), (2.9a)

Cm
n,�( f ;±r ′) =

∫ [
ϕm

n,�(r)
]∗

f (r ± r ′) d3r. (2.9b)

The expansion (2.9) is a one-range addition theorem since the variables r and r ′ are
completely separated in a unique way independent of the lengths of r and r ′: The
dependence on r is contained in the functions ϕm

n,�(r), whereas r ′ occurs only in the
expansion coefficients Cm

n,�( f ;±r ′) which are overlap or convolution-type integrals.
Since the functions {ϕm

n,�(r)}n,�,m are by assumption complete and orthonormal in

the Hilbert space L2(R3), the existence of the one-range addition theorem (2.9) as
well as its convergence in the mean is guaranteed if f ∈ L2(R3).

The summation limits in (2.9) depend on the exact definition of the function set
{ϕm

n,�(r)}n,�,m . Unless explicitly specified, this article tacitly uses the convention

∑

n�m

=
∞∑

n=1

n−1∑

�=0

�∑

m=−�
, (2.10)

which is in agreement with the usual convention for the bound state hydrogen eigen-
functions.

It is a typical feature of all expansions of Hilbert space elements in terms of func-
tion sets, which are complete and orthonormal in this Hilbert space, that they do not
necessarily converge pointwise but only in the mean with respect to the norm of the
corresponding Hilbert space. As is well known from the mathematical literature, con-
vergence in the mean is weaker than pointwise convergence. Accordingly, expansions
of that kind are not necessarily suited for a pointwise representation of a function.
However, as discussed in more detail in Sect. 6, we must use a weaker form of conver-
gence if we want construct one-range addition theorems for functions that are singular
for r ± r ′ = 0. Moreover, we do not really need the stronger pointwise convergence
if we only want to evaluate multicenter integrals with the help of addition theorems.
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One-range addition theorems of the kind of (2.9) were constructed by Filter and
Steinborn [29, Eqs. (5.11) and (5.12)] and later applied by Kranz and Steinborn [149]
and by Trivedi and Steinborn [190]. An alternative derivation of these addition theo-
rems based on Fourier transformation combined with weakly convergent expansions
of the plane wave exp(±ip · r) with p, r ∈ R

3 was presented in [194, Sect. 7] and
in [139]. A similar approach based on the work of Shibuya and Wulfman [176] was
pursued by Novosadov [157, Sect. 3].

As discussed in [204, Sect. 3]), it is also possible to formulate one-range addition
theorems that converge with respect to the norm of a weighted Hilbert space

L2
w(R

3) =
{

f : R
3 → C

∣∣∣∣
∫
w(r) | f (r)|2 d3r < ∞

}
, (2.11)

wherew(r) �= 1 is a suitable positive weight function. If we assume that f ∈ L2
w(R

3)

and that the functions {ψm
n,�(r)}n,�,m are complete and orthonormal in L2

w(R
3), then

we obtain the following one-range addition theorem [204, Eq. (3.6)]:

f (r ± r ′) =
∑

n�m

Cm
n,�( f, w;±r ′) ψm

n,�(r), (2.12a)

Cm
n,�( f, w;±r ′) =

∫ [
ψm

n,�(r)
]∗
w(r) f (r ± r ′) d3r. (2.12b)

A one-range addition theorem of the type of either (2.9) or (2.12) for a function
f : R

3 → C is a mapping R
3 × R

3 → C. Compared to the better known two-range
addition theorems like the Laplace expansion (2.2), which depend on r and r ′ only
indirectly via r< and r>, one-range addition theorems have the highly advantageous
feature that they provide unique infinite series representations of functions f (r ± r ′)
with separated variables r and r ′ that are valid for the whole argument set R

3 × R
3.

In his k-dependent one-range addition theorems for Slater-type functions and related
functions, Guseinov used as a complete and orthonormal set the following class of
functions [46, Eq. (1)], which—if the mathematical notation (D.2) for the generalized
Laguerre polynomials is used—can be expressed as follows [204, Eq. (4.16)]:

k�
m
n,�(γ, r) =

[
(2γ )k+3(n − �− 1)!
(n + �+ k + 1)!

]1/2

e−γ r L(2�+k+2)
n−�−1 (2γ r)Y m

� (2γ r),

n ∈ N, n ≥ �+ 1, k = −1, 0, 1, 2, . . . , γ > 0. (2.13)

The restriction to integral values of k = −1, 0, 1, 2, . . . is unnecessary. The math-
ematical definition (D.2) of the generalized Laguerre polynomials U (α)

n (z) permits
nonintegral superscripts α. Thus, the condition k = −1, 0, 1, 2, . . . in (2.13) can
be replaced by k ∈ [−1,∞). If this is done, one only has to replace the factorial
(n + �+ k + 1)! in (2.13) by the gamma function �(n + �+ k + 2).

123



28 J Math Chem (2012) 50:17–81

These functions are orthonormal with respect to the weight function w(r) = rk

(compare also [46, Eq. (4)]):

∫ [
k�

m
n,�(γ, r)

]∗
rk

k�
m′
n′,�′(γ, r) d3r = δnn′ δ��′ δmm′ . (2.14)

Accordingly, these functions are complete and orthonormal in the weighted Hilbert
space

L2
rk (R

3)=
{

f : R
3 → C

∣∣∣∣
∫

rk | f (r)|2d3r < ∞
}
, k = − 1, 0, 1, 2, . . . . (2.15)

As discussed in the text following [204, Eq. (4.20)], the functions k�
m
n,�(γ, r) can—

depending on the value of the free parameter k = −1, 0, 1, 2, . . .—reproduce several
other physically relevant complete and orthonormal function sets.

If we set k = 0 in (2.15), we retrieve the Hilbert space L2(R3) of square integrable
functions defined by (2.8) which because of the Born interpretation of bound state
wave functions is the most natural choice for the representation of effective one-par-
ticle wave functions in electronic structure calculations.

For k �= 0, there is, however, a problem since we neither have L2(R3) ⊂ L2
rk (R

3)

nor L2
rk (R

3) ⊂ L2(R3). Thus, the Hilbert spaces L2(R3) and L2
rk (R

3) are for k �= 0
inequivalent. This applies also to approximation processes which (should) converge
with respect to the norms of these Hilbert spaces (see for example [206, Appendix E]).

Conceptually, the derivation of a one-range addition is a triviality. This follows
from the obvious fact that an arbitrary Hilbert space element can be expanded in terms
of a function set that is complete and orthonormal in this Hilbert space.

Unfortunately, this does not imply that the derivation of a one-range addition theo-
rem is necessarily a simple task. The challenging part is the construction of computa-
tionally convenient expressions for the overlap integrals (2.9b) or (2.12b), respectively.
In realistic applications, we cannot not tacitly assume that the use of one-range addition
theorems in multicenter integrals necessarily leads to rapidly convergent expansions
(compare for instance the convergence rates reported by Trivedi and Steinborn [190]).
Therefore, we must be able to compute the overlap integrals (2.9b) or (2.12b) both
efficiently and reliably even for possibly very large indices.

Let me conclude this Section with some short remarks on the relative advantages
and disadvantages of some of the various sets of exponentially decaying function sets
that are described in the literature.

The best known and most often used exponentially decaying functions are undoubt-
edly Slater-type functions (1.1) introduced in [178,179]. Slater himself had argued that
sufficiently accurate approximations to numerically determined solutions of effective
one-particle Schrödinger equations can be obtained even if the radial nodes of these
solutions are completely ignored [178, p. 57]. Slater’s prime concern was not accuracy
but analytic simplicity [179, p. 42]. In view of the limited computational resources at
that time, Slater’s pragmatic attitude certainly made sense.

Because of their remarkably simple structure, Slater-type functions are often con-
sidered to be the most basic prototypes of all exponentially decaying functions.
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However, the simplicity of Slater-type functions in the coordinate representation is
deceptive. Slater-type functions have been used with considerable success in the
case of atomic electronic structure calculations, where multicenter integrals do not
occur.

But there is considerable evidence that in the case of multicenter integrals it is
the simplicity of a function in the momentum representation that really matters. As
for example discussed in [216], the Fourier transform of a Slater-type function is a
comparatively complicated object having the same level of complexity as the Fourier
transform of a bound state hydrogen eigenfunction (see for example [194, Sect. 4]).
Therefore, it is certainly worth while to look for alternative exponentially decaying
function sets with simpler Fourier transforms and also more convenient properties in
multicenter problems.

Inspired by previous work of Shavitt [175, Eq. (55) on p. 15], Steinborn and Filter
[182, Eqs. (3.1) and (3.2)] introduced the so-called reduced Bessel function

k̂ν(z) = (2/π)1/2 zν Kν(z). (2.16)

Here, Kν(z) is a modified Bessel function of the second kind [154, p. 66]. If the order
ν is half-integral, ν = m + 1/2 with m ∈ N0, the reduced Bessel function is an
exponential multiplied by a terminating confluent hypergeometric series 1 F1 (see for
example [217, Eq. (3.7)]):

k̂m+1/2(z) = 2m (1/2)m e−z
1 F1(−m;−2m; 2z). (2.17)

As discussed in more detail in Sect. 6 or in [208, Sect. 4], Steinborn and Filter became
interested in reduced Bessel functions because of a known Gegenbauer-type addition
theorem which allowed a simple derivation a two-range addition theorem for reduced
Bessel functions with half-integral orders (see for example [182, Eq. (3.4)] or, as an
improved version [218, Eq. (5.5)]).

In connection with convolution and Coulomb integrals, Filter and Steinborn later
introduced the so called B functions as an anisotropic generalization of the reduced
Bessel functions with half-integral orders [28, Eq. (2.14)]:

Bm
n,�(β, r) =

[
2n+�(n + �)!

]−1
k̂n−1/2(βr)Y m

� (βr), n ∈ Z. (2.18)

B functions are fairly complicated mathematical objects, and (2.18) and (2.17)
imply that a B function can be expressed as a linear combination of Slater-type func-
tions with integral principal quantum numbers. Hence, it is not at all clear why the
use of the comparatively complicated B functions should offer any advantages over
Slater-type functions which possess an exceptionally simple explicit expression in the
coordinate representation.

Let us for the moment assume that we form some finite linear combinations of
Slater-type functions and that we do some mathematical manipulations with this
linear combination. Normally, the complexity of the resulting expression increases,
depending on the number of Slater-type functions occurring in the linear combination.
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In fortunate cases, however, it may happen that most terms of the resulting expression
cancel exactly. Thus, a significant reduction of complexity is also possible if we form
appropriate linear combinations.

The Fourier transform of a B function seems to be such a fortunate case since it is
of exceptional simplicity among exponentially decaying functions:

B̄m
n,�(α,p) = (2π)−3/2

∫
e−ip·r Bm

n,�(α, r) d3r

= (2/π)1/2
α2n+�−1

[α2 + p2]n+�+1 Y m
� (−ip). (2.19)

This is the most consequential and also the most often cited result of my PhD thesis
[193, Eq. (7.1-6) on p. 160]. Later, (2.19) was published in [216, Eq. (3.7)]. Indepen-
dently and almost simultaneously, (2.19) was also derived by Niukkanen [156, Eqs.
(57–58)].

The exceptionally simple Fourier transform (2.19) explains why multicenter inte-
grals of B functions are often simpler than the corresponding integrals of other expo-
nentially decaying functions (see for example [170,171,208] and references therein).
It also explains why it was comparatively easy to derive two-range [201,218] and
one-range [29] addition theorems for B functions.

The exceptionally simple Fourier transform (2.19) also explains why other expo-
nentially decaying functions can be expressed in terms of B functions. For example,
a Slater-type function with an integral principal quantum number can be expressed by
the following finite sum of B functions [28, Eqs. (3.3) and (3.4)]:

χm
n,�(β, r) = 2n

∑

σ≥0

(−1)σ
(−[n − �− 1]/2)σ (−[n − �]/2)σ

σ !
× (n − σ)! Bm

n−�−σ,�(β, r). (2.20)

If n − � is even, the Pochhammer symbol (−[n − �]/2)σ causes a termination of the
σ summation after a finite number of steps, and if n − � is odd, this is accomplished
by the Pochhammer symbol (−[n − �− 1]/2)σ .

It is also possible to express Guseinov’s complete and orthonormal functions

k�
m
n,�(γ, r) defined by (2.13), which play a central role in Guseinov’s work on one-

range addition theorems, as a finite sum of B functions. We only have to use [193, Eq.
(3.3–35) on p. 45]

e−z L(α)n (2z) = (α + 2n + 1)
n∑

σ=0

(−2)σ �(α + n + σ + 1)

(n − σ)!σ !�(α + 2σ + 2)
k̂σ+1/2(z) (2.21)

to obtain
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k�
m
n,�(γ, r) =

{
γ k+3 (n + �+ k + 1)!

2k+1 (n − �− 1)!
}1/2

(2n + k + 1) �(1/2) (�+ 1)!
�

(
�+ 2 + k/2

)
�

(
�+ [k + 5]/2)

×
n−�−1∑

ν=0

(−n + �+ 1)ν (n + �+ k + 2)ν (�+ 2)ν
ν! (�+ 2 + k/2

)
ν

(
�+ [k + 5]/2)

ν

Bm
ν+1,�(γ, r).

(2.22)

Consequently, explicit expressions for multicenter integrals and addition theorems
of most exponentially decaying functions—among them Slater-type functions with
integral principal numbers and Guseinov’s functions—can be derived via the often
simpler analogous results for B functions.

3 Guseinov’s rearrangements of one-range addition theorems

In [41–44,46], Guseinov derived one-range addition theorems for Slater-type func-
tions χM

N ,L(β, r ± r ′) with integral or nonintegral principal quantum numbers N by
expanding them in terms of his complete and orthonormal functions {k�

m
n,�(γ, r)}n,�,m

defined by (2.13) with an in general different scaling parameter γ �= β > 0:

χM
N ,L(β, r ± r ′) =

∑

n�m
kXN ,L ,M

n,�,m (γ, β,±r ′) k�
m
n,�(γ, r), (3.1a)

kXN ,L ,M
n,�,m (γ, β,±r ′) =

∫ [
k�

m
n,�(γ, r)

]∗
rk χM

N ,L(β, r ± r ′) d3r. (3.1b)

As long as the principal quantum number N is not too negative, which will be tacitly
assumed in the following text, the Slater-type function χM

N ,L(β, r ± r ′) belongs to the

weighted Hilbert spaces L2
rk (R

3) defined by (2.15) with k = −1, 0, 1, 2, . . .. Accord-
ingly, the k-dependent one-range addition theorems (3.1), which are special cases of
the general addition theorem (2.12), converge in the mean with respect to the norms
of their corresponding weighted Hilbert spaces L2

rk (R
3).

As already remarked at the end of Sect. 2, the central computational problem occur-
ring in the context of Guseinov’s one-range addition theorems (3.1) is the efficient and
reliable evaluation of the overlap integrals (3.1b).

Normally, it is much easier to compute overlap integrals of exponentially decaying
functions with equal scaling parameters β = γ than with different parameters β �= γ .
However, Guseinov wanted to have this additional degree of freedom for certain appli-
cations. For example, in [66] Guseinov represented the Coulomb potential 1/|r − r ′|
as the limiting case β → 0 of the Yukawa potential exp(−β|r − r ′|)/|r − r ′|, which
is proportional to the Slater-type function χ0

0,0(β, r − r ′). In this way, Guseinov [66]
formally obtained a one-range addition theorem of the Coulomb potential in terms of
his functions k�

m
n,�(γ, r). But this approach leads to other convergence and existence

problems [204,206] which will be discussed in more details in [211].
For the evaluation of the overlap integrals (3.1b) occurring in his addition the-

orems (3.1a), Guseinov uses a simple approach which was first used by Smeyers
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[180] in 1966. To the best of my knowledge, this approach was adopted in 1978 by
Guseinov [41, Eqs. (6–8)] and consistently used in his later publications. Unfortu-
nately, Smeyers’ simple approach is not necessarily good, as already emphasized in
1982 by Trivedi and Steinborn [190, pp. 116–117].

It follows at once from the explicit expression (D.2) of the generalized Laguerre
polynomials that Guseinov’s functions can be expressed as finite sums of Slater-type
functions with integral principal quantum numbers:

k�
m
n,�(γ, r) =

n∑

ν=�+1
kG(n,�)

ν−�−1(γ ) χ
m
ν,�(γ, r), (3.2a)

kG(n,�)
j (γ ) = 2�

[
(2γ )k+3(n+�+k+1)!

(n − �− 1)!
]1/2

(−n+�+1) j 2 j

(2�+k+ j+2)! j ! . (3.2b)

Accordingly, the overlap integrals (3.1b) can be expressed as finite sums of overlap
integrals of Slater-type functions:

kXN ,L ,M
n,�,m (γ, β,±r ′) = γ−k

n∑

ν=�+1
kG(n,�)

ν−�−1(γ ) SN ,L ,M
ν+k,�,m(γ, β,±r ′), (3.3a)

SN ,L ,M
n,�,m (γ, β,±r ′) =

∫ [
χm

n,�(γ, r)
]∗
χM

N ,L(β, r ± r ′) d3r. (3.3b)

Inserting this into the addition theorems (3.1) yields (compare [46, Eqs. (15) and (16)]):

χM
N ,L(β, r ± r ′) = γ−k

∑

n�m
k�

m
n,�(γ, r)

n∑

ν=�+1
kG(n,�)

ν−�−1(γ ) SN ,L ,M
ν+k,�,m(γ, β,±r ′).

(3.4)

Guseinov’s approach seems to have the advantage that existing programs for over-
lap integrals of Slater-type functions can be used for the evaluation of the overlap
integrals (3.1b) involving Guseinov’s functions. Unfortunately, this seemingly con-
venient approach can easily lead to stability problems. Numerical instabilities are
extremely likely in expressions based on (3.2) if the indices n of the Guseinov func-
tions k�

m
n,�(γ, r) are large.

In his desire to reduce his whole formalism of one-range addition theorems to Slater-
type functions with integral principal quantum numbers, Guseinov even expressed the
functions k�

m
n,�(γ, r) on the right-hand side of (3.4) by Slater-type functions according

to (3.2) (compare [46, Eqs. (14–16)]):

χM
N ,L(β, r ± r ′) = γ−k

∑

n�m

n∑

ν′=�+1
kG(n,�)

ν′−�−1(γ ) χ
m
ν′,�(γ, r)

×
n∑

ν=�+1
kG(n,�)

ν−�−1(γ ) SN ,L ,M
ν+k,�,m(γ, β,±r ′). (3.5)
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In this version of Guseinov’s k-dependent addition theorems, the complete and orthog-
onal functions k�

m
n,�(γ, r) do not occur any more and are replaced by Slater-type

functions χm
n,�(γ, r) with integral principal quantum numbers n ≥ �+ 1. Apparently,

Guseinov considered this to be a major achievement.
But there is a price to be paid. Firstly, introducing one finite inner sum after the

other does not look like a promising computational strategy. Secondly, the numerical
stability of Guseinov’s transformations is questionable, in particular in the case of
(very) large quantum numbers.

Whenever we do calculations of nontrivial complexity with a fixed precision,
numerical stability is invariably a very important issue. Let us for example assume
that we work with a series expansion whose coefficients are given by complicated
expressions such as multiple nested finite sums (this characterization certainly applies
to Guseinov’s rearranged addition theorems). If alternating signs occur in these nested
sums, a loss of significant digits cannot be ruled out, and in the case of (very) large
indices, a catastrophic accumulation of rounding errors may even produce completely
nonsensical results.

Guseinov’s rearranged addition theorems are based on the simple fact that Gu-
seinov’s orthogonal functions k�

m
n,�(γ, r) can according to (3.2) be expressed as

finite sums of Slater-type functions with integral principal quantum numbers. The
linear combination (3.2) is nothing but the explicit expression (D.2) of a generalized
Laguerre polynomial in disguise. The coefficients in (D.2) and thus also the coeffi-
cients in (3.2) have strictly alternating signs.

Sign alternation of the coefficients of the classical orthogonal polynomials is a nec-
essary requirement for an orthogonality relationship of the type of (D.3). But this sign
alternation can easily lead to a catastrophic accumulation of rounding errors, if we
try to compute an orthogonal polynomial with a large index from its explicit expres-
sion. In practice, one usually avoids explicit expressions. It is much better to evaluate
orthogonal polynomials via their three-term recursions (see for example [163, Eq.
(18.9.1) and Table 18.9.1]). For example, Gautschi, who is generally considered to be
one of the leading experts on the stability of linear recurrences, wrote in [33, p. 277]:

It is our experience, and the experience of many others, that the basic three-term
recurrence relation for orthogonal polynomials is generally an excellent means
of computing these polynomials, both within the interval of orthogonality and
outside of it.

A FORTRAN SUBROUTINE OTHPL, which evaluates classical orthogonal poly-
nomials via their three-term recursions [163, Eq. (18.9.1) and Table 18.9.1], is listed in
[220, pp. 23–24]. Another important aspect is that a recursive evaluation is much more
efficient, in particular if whole strings of orthogonal polynomials have to be evaluated
simultaneously.

As long as the opposite is not explicitly proven, it makes sense to be cautious and
to assume that an expression like (3.2), whose coefficients kG(n,�)

j (γ ) have strictly
alternating signs, inherits the stability problems of the explicit expression (D.2) of the
generalized Laguerre polynomials from which it was derived. Similarly, the coeffi-
cients kG(n,�)

ν′−�−1(γ ) and kG(n,�)
ν−�−1(γ ) in the inner ν′ and ν sums in (3.5) have strictly

alternating signs.
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I am not at all convinced that inner sums based on (D.2), which occur as coefficients
in infinite series expansions like the one on the right-hand side of (3.5) or later in (3.7)
and (3.8), can be computed in a numerically stable way for large values of the outer
summation indices n and �. This has to be investigated (much) more thoroughly.

Another problem is that conventional programs for overlap integrals of Slater-type
functions, as they are for instance used in semiempirical calculations, normally cannot
be used in the case of (very) large principal and angular momentum quantum numbers.
Therefore, one should look for alternative expressions for the overlap integrals (3.1b),
which are not based on (3.2) and which permit an efficient and reliable evaluation even
for (very) large values of the indices n and �.

Slater-type functions are complete but not orthogonal. But this nonorthogonality
can also cause problems. There is a practically very consequential aspect of orthogonal
expansions which is often not sufficiently appreciated. Let us assume that f belongs
to some Hilbert space H with inner product (·|·) and that the functions {ϕn}∞n=0 are
complete and orthonormal in H . Then, as discussed in Appendix C, f possesses the
orthogonal expansion (C.4) which converges in the mean with respect to the norm
‖ · ‖ of H . Moreover, the expansion coefficients (ϕn| f ) satisfy Parseval’s equality
(see for example [166, Eq. (II.2) on p. 45])

‖ f ‖2 =
∞∑

n=0

|(ϕn| f )|2. (3.6)

Parseval’s equality implies that the inner products (ϕn| f ) are bounded in magnitude
and that they vanish as n → ∞. This may well be the main reason why orthogonal
expansions tend to be computationally well behaved.

In the case of nonorthogonal expansions of the type of (C.3), quite a few complica-
tions can happen. We cannot tacitly assume that the expansion coefficients Cn in (C.3)
are necessarily bounded in magnitude. These coefficients can have alternating signs
and even increase in magnitude with increasing index n (examples can for instance
be found in [144, Table I on p. 166] or [27, Appendix E on pp. 162–164]). Such a
behavior of the expansion coefficients can easily lead to a cancellation of significant
digits or even to a catastrophic accumulation of rounding errors.

Guseinov approximated the Slater-type function χM
N ,L(β, r ± r ′) by a truncation of

the addition theorem (3.5) including only the first N terms of the outer n summation
and defined the complete addition theorem as the limit N → ∞ of his N -dependent
truncation (compare [46, Eq. (13)]):

χM
N ,L(β, r ± r ′) = γ−k lim

N →∞

N∑

n=1

n−1∑

�=0

�∑

m=−�

×
n∑

ν′=�+1
kG(n,�)

ν′−�−1(γ ) χ
m
ν′,�(γ, r)

n∑

ν=�+1
kG(n,�)

ν−�−1(γ ) SN ,L ,M
ν+k,�,m(γ, β,±r ′). (3.7)

In the N -dependent part of this expression, Guseinov changed the order of summa-
tions and formally expressed this finite sum as a linear combination of Slater-type
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functions with integral principal quantum numbers [46, Eq. (15)]. In this context, it
is in my opinion advantageous to change the order of the finite n and � summations
according to

∑N
n=1

∑n−1
�=0 → ∑N −1

�=0
∑N

n=�+1. Then, we obtain:

χM
N ,L(β, r ± r ′) = γ−k lim

N →∞

N −1∑

�=0

�∑

m=−�

N∑

t=�+1

χm
t,�(γ, r)

×
N∑

p=t
kG(p,�)

t−�−1(γ )

n∑

q=�+1
kG(p,�)

q−�−1(γ ) SN ,L ,M
q+k,�,m(γ, β,±r ′). (3.8)

As long as N is finite, the transformation of the N -dependent part of (3.7) to the
N -dependent part of (3.8) is legitimate. But it is not guaranteed that this transforma-
tion is still legitimate in the limit N → ∞ and that one-range addition theorems can
be reformulated as expansions in terms of nonorthogonal Slater-type functions with
integral principal quantum numbers. Further details will be given in Sect. 6.

One-range addition theorems for Slater-type functions are fairly complicated math-
ematical objects, whose series coefficients are essentially overlap integrals. Thus, a
detailed analysis of the existence and convergence properties of such an addition
theorem is certainly a very demanding task. Consequently, it makes sense to look
for simplifications and to pursue an indirect approach. The situation becomes much
more transparent if we do not look at addition theorems for Slater-type functions
χM

N ,L(β, r ± r ′), but rather at their angular projections

�
N ,L ,M
�,m (β, r,±r ′) =

∫

|r|=1

[
Y m
� (r/r)

]∗
χM

N ,L(β, r ± r ′) d3r. (3.9)

If we insert the addition theorem (3.1) into this integral and perform the integration
over the surface of the unit sphere in R

3, we obtain with the help of the orthonormality
of the spherical harmonics an expansion in terms of the radial parts of Guseinov’s func-
tions k�

m
n,�(γ, r), which can be reformulated as an expansion in terms of generalized

Laguerre polynomials:

eγ r �
N ,L ,M
�,m (β, r,±r ′) =

∞∑

n=�+1
kXN ,L ,M

n,�,m (γ, β,±r ′)

×
[
(2γ )k+3(n − �− 1)!
(n + �+ k + 1)!

]1/2

(γ r)� L(2�+k+2)
n−�−1 (2γ r). (3.10)

A further substantial simplifications takes place if we do not consider the fairly com-
plicated one-range addition theorems but rather their much simpler one-center limits
r ′ = 0. Then, for fixed β, γ > 0 the overlap integrals kXN ,L ,M

n,�,m (γ, β,±r ′) defined
by (3.1b) simplify to become numbers. Moreover, because of the orthonormality of
the spherical harmonics only the overlap integrals with � = L and m = M can be
nonzero.
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4 The transformation of Laguerre series to power series

If Guseinov’s rearrangements of the one-range addition theorems (3.1) for Slater-type
functions χM

N ,L(β, r±r ′) are legitimate, we ultimately obtain an expansion of a Slater-
type function with an in general nonintegral principal quantum number N ∈ R\N in
terms of Slater-type functions {χm

n,�(γ, r)}n�m with integral principal quantum num-
bers n and a common scaling parameter γ > 0:

χM
N ,L(β, r ± r ′) =

∑

n�m

X
(N ,L ,M)
n,�,m (β, γ,±r ′) χm

n,�(γ, r). (4.1)

If we set r ′ = 0, this expansion simplifies and we obtain (1.2).
If the expansion (4.1) exists and converges for the whole argument set R

3 × R
3,

then it is obviously a one-range addition theorem. Moreover, (4.1) can be reformulated
as a power series in γ r by shifting the exponential part exp(−γ r) of the Slater-type
functions χm

n,�(γ, r) to the left-hand side:

eγ r χM
N ,L(β, r ± r ′) =

∑

n�m

X
(N ,L ,M)
n,�,m (β, γ,±r ′) (γ r)n−1 Y m

� (r/r). (4.2)

This expansion can be transformed to an infinite number of �-dependent power series
in γ r for the angular projections �N ,L ,M

�,m (β, r,±r ′) defined by (3.9):

eγ r �
N ,L ,M
�,m (β, r,±r ′) =

∞∑

n=�+1

X
(N ,L ,M)
n,�,m (β, γ,±r ′) (γ r)n−1. (4.3)

A comparison of (3.10) and (4.3) shows that Guseinov’s rearrangements ultimately
corresponds to the transformation of a Laguerre series

f (z) =
∞∑

n=0

λ(α)n L(α)n (z), (4.4a)

λ(α)n = n!
�(α + n + 1)

∞∫

0

zα e−z L(α)n (z) f (z) dz, (4.4b)

which converges in the mean with respect to the norm of the weighted Hilbert space
L2

e−z zα
([0,∞)

)
defined by (D.8), to a power series

f (z) =
∞∑

n=0

γn zn, (4.5)

which—if it exists—converges pointwise in a suitable subset of the complex plane.
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There is, however, the problem that analyticity in the sense of complex analysis and
the existence of a Laguerre expansion are completely unrelated concepts. Therefore,
we cannot expect that the transformation from (4.4) to (4.5) is necessarily possible in
the case of an essentially arbitrary function f : C → C.

The convergence and existence problems, which occur in this context, were recently
studied in depth in [207]. There, some simple sufficient conditions based on the decay
rate and the sign pattern of the Laguerre series coefficients λ(α)n as n → ∞ were
formulated. These conditions, which extend previous results by Gottlieb and Orszag
[35, p. 42] and by Doha [25, p. 5452], respectively, make it possible to decide whether
the transformation of a Laguerre series of the type of (4.4) to a power series produces
a mathematically meaningful result or not.

In order to understand better the possible pitfalls and dangers of such a transfor-
mation, let us first consider a partial sum of the infinite Laguerre series (4.4):

fM (z) =
M∑

n=0

λ(α)n L(α)n (z) (4.6)

=
M∑

n=0

λ(α)n
(α + 1)n

n!
n∑

ν=0

(−n)ν
(α + 1)ν

zν

ν! , M ∈ N0. (4.7)

In this partial sum, the power z p with 0 ≤ p ≤ M occurs in the Laguerre polynomials
L(α)p (z), L(α)p+1(z), . . . , L(α)M (z). Thus, we have add up all contributions with ν = p on
the right-hand side of (4.7) to obtain the coefficients of z p. A short calculation yields
[207, Eq. (3.13)]:

fM (z) =
M∑

ν=0

(−z)ν

ν!
M−ν∑

μ=0

(α + ν + 1)μ
μ! λ

(α)
μ+ν . (4.8)

Since the truncated Laguerre series fM (z) is simply a polynomial of degree M in
z, it is always possible to reformulate it by interchanging the order of the nested finite
sums. No convergence and/or existence problems can occur.

Unfortunately, this does not mean that the transformation from (4.6) to (4.8) is also
possible in the limit M → ∞. In this case, the finite inner sum on the right-hand side
of (4.8) becomes an infinite series which can a diverge if the coefficients λ(α)n do not
decay sufficiently rapidly as n → ∞. Moreover, the fact that fM (z) is a mathemati-
cally meaningful object does not imply that f (z) possesses a power series expansion
of the type of (4.5) which converges in a suitable subset of the complex plane. The
expression (4.8) for fM (z) possesses the following general structure:

fM (z) =
M∑

μ=0

γ (M)μ zμ. (4.9)
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The coefficients γ (M)n depend explicit on the summation limit M , i.e., we have in gen-
eral γ (M)n �= γ

(M+1)
n �= γ

(M+2)
n �= . . . for all n ∈ N0. Thus, we have to show explicitly

that the γ (M)n possess for all n ∈ N0 well defined limits γn = γ
(∞)
n = limM→∞ γ

(M)
n .

Only if all these limits exist, f (z) can possess a convergent power series expansion
about z = 0. This, however, requires that the Laguerre series coefficients λ(α)n decay
sufficiently rapidly as n → ∞.

Let us now consider the transformation of the infinite Laguerre expansion (4.4).
The power z p with p ≥ 0 occurs in all Laguerre polynomials L(α)n (z) with n ≥ p. We
obtain the corresponding power series coefficient γp, if we add up all contributions
with ν = p in the infinite series

f (z) =
∞∑

n=0

λ(α)n
(α + 1)n

n!
n∑

ν=0

(−n)ν
(α + 1)ν

zν

ν! . (4.10)

A short calculation yields [207, Eq. (3.14)]:

f (z) =
∞∑

ν=0

(−z)ν

ν!
∞∑

μ=0

(α + ν + 1)μ
μ! λ

(α)
μ+ν . (4.11)

If we compare (4.8) and (4.11), which corresponds to the limit M → ∞ in (4.8),
we immediately see that the rearrangement of an infinite Laguerre expansion is not
necessarily possible since the power series coefficients γn are now given by infinite
series. If the inner μ series in (4.11) do not produce finite results, we end up with a
formal power series with expansion coefficients that are infinite in magnitude.

Thus, the existence of the power series (4.5) for f (z) depends crucially on the
decay rate and the sign pattern of the Laguerre series coefficients λ(α)n as n → ∞. In
[207], three different prototypes of large index behavior of the coefficients λ(α)n were
discussed:

– algebraic decay with ultimately monotone signs,
– exponential or factorial decay,
– algebraic decay with ultimately strictly alternating signs.

If the coefficientsλ(α)n decay algebraically as n → ∞ and ultimately have monotone
signs, the inner μ series in (4.11) diverge for sufficiently large outer indices ν [207,
Sect. 4]. Thus, a function f (z) represented by a Laguerre expansion with ultimately
monotone and algebraically decaying series coefficients λ(α)n cannot be analytic in a
neighborhood of the origin z = 0.

If the coefficients λ(α)n decay exponentially or even factorially, the inner μ series
in (4.11) converge (often quite rapidly), and the function f (z) under consideration is
analytic in a suitable neighborhood of the origin z = 0 [207, Sect. 5]. This is pretty
much the most advantageous situation we can hope for.

These conclusions are in agreement with short remarks by Gottlieb and Orszag
[35, p. 42] and by Doha [25, p. 5452], respectively, who had stated without detailed
proof that such a Laguerre series converges faster than algebraically if the function
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under consideration is analytic at the origin. However, both Gottlieb and Orszag
[35, p. 42] and Doha [25, p. 5452], respectively, had failed to see that there is a
different scenario, which also produces convergent power series expansions about
z = 0.

Let us assume that the coefficients λ(α)n decay algebraically in magnitude and ulti-
mately have strictly alternating signs. Then, the inner μ series in (4.11) still diverge at
least for sufficiently large values of the outer index ν. However, this divergence does
not imply that a convergent power series about z = 0 does not exist. The strictly alter-
nating signs make it possible to associate something finite to the divergent μ series by
employing suitable summation techniques for divergent series. A highly condensed
review of summation techniques with a special emphasis on sequence transformations
can be found in [207, Appendices A and B], and in [209] there is an admittedly incom-
plete discussion of the usefulness of sequence transformations beyond the summation
of divergent series.

In [207, Sect. 4], several known generating functions of the generalized Laguerre
polynomials were recovered by summing divergent inner μ series representing power
series coefficients. In these comparatively simple cases, the divergent inner μ series
could always be expressed by generalized hypergeometric series with argument −1.
However, these generalized hypergeometric series only converge in the interior of
the unit circle. Thus, analytic continuation from the interior of the circle of con-
vergence of such a hypergeometric series to its boundary was sufficient to accom-
plish a summation. In the case of simpler hypergeometric series, this is not too
difficult.

A skeptical reader might therefore conclude that a summation is only feasible in the
case of comparatively simple problems. This is not true. In [207, Sect. 6] it was shown
that it is also possible to sum divergent inner μ series by purely numerical techniques.
Particularly good results were obtained by the nonlinear S transformation which I had
introduced in [195, Eq. (8.4-4)] (a highly condensed review of the historical devel-
opment was given in [210, Sect. 2]). Some authors call this S transformation the
Weniger transformation (see for example [13–15,22,152,188] or [34, Eq. (9.53) on p.
287]). This terminology was also used in the recently published NIST Handbook of
Mathematical Functions [163, Chapter 3.9(v) Levin’s and Weniger’s Transformations]
(see also the companion NIST Digital Library of Mathematical Functions under http://
dlmf.nist.gov/3.9#v).

The example of divergent but summable inner μ series shows that fairly sophisti-
cated mathematical techniques may be needed to accomplish the transformation of a
Laguerre expansion to a power series.

It should be noted that the structure of the formulas, which effect the transforma-
tion of a Laguerre series to power series, is of a more general nature, and that very
similar transformation formulas occur also in completely different contexts. In [210,
Appendix B] it was shown that formulas having analogous structures occur as long
as the transformation matrices are triangular and satisfy certain orthogonality condi-
tions. In [210], transformations between factorial series and inverse power series were
considered, and the transformation matrices involved Stirling numbers of the first and
second kind, respectively.
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5 One-center expansions for Slater-type functions

As already mentioned above, the one-center expansion for Slater-type functions with
in general nonintegral principal quantum numbers used by Guseinov and Mamedov
[122, Eq. (4)] was originally derived by Guseinov [46, Eq. (21)] as the one-center
limit of a rearranged addition theorem for Slater-type functions of the type of (3.8)
[46, Eq. (15)]. It is, however, both simpler and for our purposes much more instructive
to derive first one-center expansions of Slater-type function with both integral and non-
integral principal quantum numbers in terms of Guseinov’s complete and orthonormal
Laguerre-type functions {k�

m
n,�(γ, r)}n�m defined by (2.13). In the second step, it is

investigated whether and under which conditions these orthogonal expansions can
be transformed to expansions in terms of Slater-type functions {χm

n,�(γ, r)}n�m with
integral principal quantum numbers n.

A convenient starting point for the construction of the one-center expansion of a
Slater-type function with an essentially arbitrary principal quantum number in terms
of Guseinov’s functions is the following Laguerre series [204, Eq. (6.12)]:

zρ euz = (1 − u)−α−ρ−1 �(α + ρ + 1)

�(α + 1)

×
∞∑

n=0

2 F1

(
−n, α + ρ + 1;α + 1; 1

1 − u

)
L(α)n (z),

ρ ∈ R\N0, �(α + 2ρ) > −1, u ∈ (−∞, 1/2). (5.1)

The restriction u ∈ (−∞, 1/2) is necessary to guarantee the existence of some inte-
grals occurring in the derivation of this expansion. If we assume ρ = m with m ∈ N0,
no immediately obvious simplification occurs in (5.1). But for u = 0, we obtain a ter-
minating Gaussian hypergeometric series 2 F1 with unit argument that can be expressed
in closed form with the help of Gauss’ summation theorem [154, p. 40] and we obtain
a much simpler expansion [26, Eq. (16) on p. 214]:

zρ = �(ρ + α + 1)

�(α + 1)

∞∑

n=0

(−ρ)n
(α + 1)n

L(α)n (z), ρ ∈ R\N0, �(α + 2ρ) > −1. (5.2)

If we now set ρ = m with m ∈ N0, the infinite series terminates because of the
Pochhammer symbol (−m)n and we obtain instead a finite sum:

zm = (α + 1)m

m∑

n=0

(−m)n
(α + 1)n

L(α)n (z), m ∈ N0, �(α)+ 2m > −1. (5.3)

The Laguerre expansions listed above can all be transformed to expansions of
Slater-type functions in terms of Guseinov’s functions. The expansion (5.1) yields the
most general case, i.e., we obtain a k-dependent one-center expansion of a Slater-type
function χM

N ,L(β, r) with a nonintegral principal quantum number N ∈ R\N in terms
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of Guseinov’s functions with different scaling parameters β �= γ > 0 [206, Eq. (5.9)]:

χM
N ,L(β, r) = (2γ )L+(k+3)/2 βN−1

[β + γ ]N+L+k+2

�(N + L + k + 2)

(2L + k + 2)!

×
∞∑

ν=0

[
(ν + 2L + k + 2)!

ν!
]1/2

k�
M
ν+L+1,L(γ, r)

×2 F1

(
−ν, N + L + k + 2; 2L + k + 3; 2γ

β + γ

)
. (5.4)

This expansion can also be derived by performing the one-center limit r ′ = 0 in the
addition theorem (3.1).

If we assume in (5.4) that the principal quantum number N of the Slater-type func-
tion is a positive integer satisfying N ≥ L +1, no immediately obvious simplification
occurs. But in the case of equal scaling parameters β = γ > 0, which corresponds to
u = 0 in (5.1), the expansion (5.4) simplifies considerably, yielding [206, Eq. (5.7)]:

χM
N ,L(β, r) = (2γ )−(k+3)/2

2N−1 �(N + L + k + 2)

×
∞∑

ν=0

(−N + L + 1)ν
[
(ν + 2L + k + 2)! ν!]1/2 k�

M
ν+L+1,L(β, r),

N ∈ R\N, β > 0, k = −1, 0, 1, 2, . . . . (5.5)

If N ∈ N and N ≥ L + 1, the infinite series on the right-hand side terminates because
of the Pochhammer symbol (−N + L + 1)ν . The resulting finite sum can also be
derived directly via (5.3).

With the help of the sufficient conditions formulated in [207] and discussed in
Sect. 4, we can analyze whether the Laguerre-type functions k�

m
n,�(γ, r) in the one-

center expansions given above can be replaced by Slater-type functions χm
n,�(γ, r)

with integral principal quantum numbers. But it is simpler and also more transparent
to investigate instead whether the equivalent Laguerre expansions (5.1, 5.2), and (5.3)
can be transformed to power series.

The most simple situation occurs if we replace in the finite sum (5.3) for the integral
power zm with m ∈ N0 the generalized Laguerre polynomials by powers via (D.2)
and rearrange the order of the summations [207, Eqs. (3.5) and (3.6)]. Then we arrive
at the trivial identity zm = zm , which proves the correctness of (5.3) but provides no
new insight.

In the case of the Laguerre expansion (5.2) for a nonintegral power zρ with ρ ∈
R\N0, we face a completely different situation. Firstly, we have no a priori reason to
assume that (5.2) converges pointwise. Hilbert space theory only guarantees that this
expansion converges in the mean with respect to the norm of the weighted Hilbert
space L2

e−z zα
([0,∞)

)
, Moreover, the power function zρ is not analytic at z = 0 in

the case of nonintegral ρ ∈ R\N0. Thus, a mathematically meaningful power series
about z = 0 cannot exist, and the transformation of the Laguerre expansion (5.2) via
(4.11) also must fail.

123



42 J Math Chem (2012) 50:17–81

This is indeed the case. We only need the asymptotic approximation [1, Eq. (6.1.47)
on p. 257]

�(z + a)/�(z + b) = za−b [
1 + O(1/z)

]
, z → ∞, (5.6)

to obtain the following asymptotic estimate for the coefficients in (5.2):

�(ρ + α + 1)

�(α + 1)

(−ρ)n
(α + 1)n

= �(ρ + α + 1)

�(−ρ) n−α−ρ−1
[
1 + O

(
n−1)] , n → ∞.

(5.7)

This asymptotic estimate shows that the coefficients in (5.2) decay algebraically as
n → ∞. Moreover, these coefficients ultimately have the same sign. Thus, on the
basis of the sufficient conditions formulated in [207] and reviewed in Sect. 4 we can
conclude that the inner μ series in (4.11) do not converge for larger values of the outer
index ν.

We can also insert the explicit expression (D.2) for the generalized Laguerre poly-
nomials into the infinite series (5.2) and rearrange the order of summations, which
yields after some algebra [207, Eq. (3.7)]:

zρ = �(ρ + α + 1)

�(α + 1)

∞∑

k=0

(−1)k
(−ρ)k
(α + 1)k

zk

k! 1 F0(k − ρ; 1). (5.8)

Superficially, it looks as if we succeeded in constructing a power series expansion for
the nonintegral power zρ . However, the generalized hypergeometric series 1 F0 with
unit argument is the limiting case z → 1 of the so-called binomial series [154, p. 38]:

1 F0(a; z) =
∞∑

m=0

(a)m
m! zm =

∞∑

m=0

(−a

m

)
(−z)m = (1 − z)−a, |z| < 1. (5.9)

If we set a = k − ρ with k ∈ N0 and ρ ∈ R\N0, we obtain for the 1 F0 in (5.8):

1 F0(k − ρ; 1) = lim
z→1

(1 − z)ρ−k =

⎧
⎪⎨

⎪⎩

∞, ρ < 0,

0, k < ρ ≥ 0,

∞, k > ρ ≥ 0.

(5.10)

Thus, the power series (5.8) for zρ is purely formal since it contains infinitely many
series coefficients that are infinite in magnitude.

The most general case is the Laguerre expansion (5.1) for zρeuz with ρ ∈ R\N0
and u ∈ (−∞, 1/2). It is immediately obvious that zρeuz is analytic at z = 0 if ρ is
integral, i.e., if ρ = m with m ∈ N0, and it is nonanalytic if ρ is nonintegral. This
implies that the inner μ series in (4.11) diverge if ρ is nonintegral, and it converges
if ρ is a nonnegative integer. However, ρ occurs on the right-hand side of (5.1) apart
from the prefactor (1 − u)−α−ρ−1�(α + ρ + 1)/�(α + 1) only in the terminating
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hypergeometric series 2 F1(−n, α + ρ + 1;α + 1; 1/(1 − u)). Since the prefactor
does not affect the convergence and existence of the resulting expansions, we have to
analyze the asymptotics of the terminating hypergeometric series as n → ∞.

Thus, with the Laguerre series coefficients

λ(α)n = (1 − u)−α−ρ−1 �(α + ρ + 1)

�(α + 1)

× 2 F1

(
−n, α + ρ + 1;α + 1; 1

1 − u

)
, ρ ∈ R\N0, (5.11)

the inner μ series in (4.11) diverge for sufficiently large values of the outer index ν,
and with the coefficients

λ(α)n = (1 − u)−α−m−1 (α + 1)m

× 2 F1

(
−n, α + m + 1;α + 1; 1

1 − u

)
, m ∈ N0 (5.12)

the inner μ series in (4.11) converge. This is certainly a surprising observation which
indicates that the difference between the almost identical terminating hypergeometric
series 2 F1 in (5.11) and (5.12), respectively, is greater than it appears at first sight.

Nevertheless, this puzzle can be resolved by analyzing the large n asymptotics of
the terminating hypergeometric series in (5.11) and (5.12), respectively. The study
of large parameters of a Gaussian hypergeometric series is an old problem of spe-
cial function theory with an extensive literature (see for example [159–161,187] and
references therein).

Large parameter estimates of that kind turned out be useful in the context of mul-
ticenter integrals. In [38, Appendix], we derived and used large parameter estimates
for some special Gaussian hypergeometric series to analyze the rate of convergence
of certain series expansions for multicenter integrals.

If we apply the linear transformation [154, p. 47]

2 F1(a, b; c; z) = (1 − z)−a
2 F1

(
a, c − b; c; z/(z − 1)

)
(5.13)

to the hypergeometric series in (5.12), we obtain:

2 F1

(
−n, α + m + 1;α + 1; 1

1 − u

)

=
(

u

u − 1

)n

2 F1

(
−n,−m;α + 1; 1

u

)
, m, n ∈ N0. (5.14)

If n becomes large and m is fixed, the terminating hypergeometric series on the right-
hand side can be expressed as follows:

2 F1

(
−n,−m, α + 1; 1

u

)
=

m∑

μ=0

(−n)μ(−m)μ
(α + 1)μ

u−μ

μ! . (5.15)
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The asymptotically dominant contribution on the right-hand side is the last term with
μ = m. With the help of (5.6) we find (−n)m = O(nm) as n → ∞. Since u ∈
(−∞, 1/2) implies u/(u − 1) ∈ (−1, 1), we can conclude that the right-hand side of
(5.14) decays exponentially as n → ∞ because of the prefactor [u/(u − 1)]n . Thus,
the inner μ series in (4.11) converge if the coefficients λ(α)n are chosen according to
(5.12).

If we apply the linear transformation (5.13) to the hypergeometric series in (5.11),
we do not obtain an expression that would be useful for our purposes. Therefore, we
apply instead the analytic continuation formula [154, pp. 47–48]

2 F1(a, b; c; z) = �(c)�(c − a − b)

�(c − a)�(c − b)
2 F1(a, b; a + b − c + 1; 1 − z)

+ �(c)�(a + b − c)

�(a)�(b)
(1 − z)c−a−b

× 2 F1(c − a, c − b; c − a − b + 1; 1 − z),

| arg(1 − z)| < π, c − a − b �= ±m, m ∈ N0, (5.16)

to the hypergeometric series in (5.11) and obtain:

2 F1

(
−n, α + ρ + 1;α + 1; 1

1 − u

)

= (−ρ)n
(α + 1)n

2 F1

(
α + ρ + 1,−n; ρ − n + 1; u

u − 1

)
. (5.17)

Application of the linear transformation (5.13) then yields:

2 F1

(
−n, α + ρ + 1;α + 1; 1

1 − u

)

= (1 − u)α+ρ+1 (−ρ)n
(α + 1)n

2 F1 (ρ + 1, α + ρ + 1; ρ − n + 1; u). (5.18)

If we set u = 0 in (5.18), the hypergeometric series on the right-hand side terminates
after the first term. Thus, we see once more that (5.1) simplifies for u = 0 to yield
(5.2).

With the help of (5.6) we find (ρ − n + 1)m = O(nm) as n → ∞. Thus, the
hypergeometric series on the right-hand side of (5.18) can for arbitrary k ∈ N0 be
expressed as follows:

2 F1 (ρ + 1, α + ρ + 1; ρ − n + 1; u)

=
k∑

κ=0

(ρ + 1)κ(α + ρ + 1)κ
(ρ − n + 1)κκ! uκ + O

(
n−k−1), n → ∞. (5.19)

For u ∈ (−1, 1/2), this hypergeometric series converges and we have a conver-
gent asymptotic expansion as n → ∞. For u ∈ (−∞, 1], the hypergeometric series
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diverges, but (5.19) nevertheless holds in the sense of an asymptotic expansion as
n → ∞. If we set k = 0 in (5.19) and use (5.7), we find that the Laguerre series
coefficients in (5.11) satisfy the leading order asymptotics

λ(α)n ∼ �(ρ + α + 1)

�(α + 1)

(−ρ)n
(α + 1)n

∼ �(ρ + α + 1)

�(−ρ) n−α−ρ−1, n → ∞. (5.20)

This asymptotic estimate, which does not depend on u, shows once more that zρeuz

is not analytic at z = 0 if ρ is nonintegral. The inner μ series in (4.11) diverge for
sufficiently large values of the outer index ν.

Comparison of (5.20) with (5.7) shows that the Laguerre series coefficients λ(α)n
in (5.2), which correspond to zρeuz with u ∈ (−∞, 1/2), and the coefficients in
(5.2), which correspond to zρ or to u = 0 in zρeuz , possess the same leading order
asymptotics as n → ∞ that does not depend of u.

6 The transformation of one-range to two-range addition theorems

As discussed in the previous Sections, the legitimacy of Guseinov’s rearrangement of
a k-dependent one-range addition theorem (3.1), whose series expansions (3.10) for
the angular projections (3.9) are essentially Laguerre series of the type of (4.4), can
be checked by analyzing the convergence of the transformation formula (4.11). One
only has to determine the asymptotic sign pattern and the asymptotic decay rate of
the expansion coefficients λ(α)n of the corresponding Laguerre series and employ the
sufficient convergence criteria formulated in [207].

As discussed in Sect. 5, this approach works in a very satisfactory way in the case
of the Laguerre series (5.1) for zρeuz or the equivalent one-center expansion (5.4) for
the Slater-type function χM

N ,L(β, r) with an in general nonintegral principal quantum
number N ∈ R\N.

The one-center expansions considered in Sect. 5 have the highly advantageous
feature that they are comparatively simple. Therefore, we can understand the large
index asymptotics of the expansion coefficients via the large index asymptotics of
some Gaussian hypergeometric series, whose derivation is not straightforward but
nevertheless not too difficult. In this way, we can explain the rate of convergence or
divergence of the rearrangements of the Laguerre series (5.1).

Guseinov’s k-dependent one-range addition theorems are genuine two-center prob-
lems. Therefore, the situation is much more difficult and we are confronted with non-
trivial technical problems. The expansion coefficients of such an addition theorem are
according to (2.9), (2.12), and (3.1) overlap integrals, which are fairly complicated
functions R

3 → C whose asymptotic sign patterns and asymptotic decay rates cannot
be determined easily. But even in this troublesome two-center case, we can arrive at
some definite conclusions by pursuing an indirect approach based on the analysis of
the singularities of the function which is to be expanded.

Our starting point is a k-dependent one-range addition theorem (3.1) for a Slater-
type functionχM

N ,L (β, r±r ′)with an in general nonintegral principal quantum number
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N ∈ R\N. We assume that we succeeded in constructing the series expansions (3.10)
for the angular projections (3.9) of the one-range addition theorem (3.1).

For the moment, let us also assume that the expansion coefficients of the series
expansions (3.10), which are Laguerre series of the type of (4.4), have asymptotic
sign patterns and asymptotic decay rates which according to the criteria formulated
in [207] guarantee that the transformation formula (4.11) produces functions C → C

that are analytic in a neighborhood the origin z = 0.
Superficially, it appears that under these circumstances the legitimacy of Gusei-

nov’s rearrangement is guaranteed: A k-dependent one-range addition theorem (3.1),
which is an expansion in terms of Guseinov’s complete and orthonormal functions
{k�

m
n,�(γ, r)}n�m , is transformed to a one-range addition theorem of the type of (4.1),

which is an expansions in terms of Slater-type functions {χM
n,L(γ, r)}n�m with integral

principal quantum numbers n and a common scaling parameter γ > 0.
But such a conclusion is premature. The transformed expansion (4.1) in terms of

Slater-type functions can only be a one-range addition theorem, i.e., a map R
3×R

3 →
C, if it converges for all r, r ′ ∈ R

3. This requires that the power series (4.3) for the
angular projections of the expansion (4.2) for exp(γ r)χM

N ,L(β, r ± r ′) converge for
all r, r ′ ∈ [0,∞). This is a very demanding requirement, which cannot be satisfied in
the case of exponentially decaying functions such as Slater-type functions. In the two-
center case, it is irrelevant whether the principal quantum number of the Slater-type
function is integral or nonintegral.

A function f : C → C is analytic at the origin z = 0 in the sense of complex
analysis if it has a power series in z that converges in some neighborhood of z = 0. Or
to put it differently: Such an f is analytic at z = 0 if its power series in z has a circle of
convergence with a nonzero radius. As is well known, we cannot tacitly assume that
the radius of convergence of a power series is necessarily infinite, or equivalently, we
cannot assume that f is necessarily an entire function that is analytic for all z ∈ C.

Therefore, we should look for features of functions analytic at z = 0, which rule
out an infinite radius of convergence but which do not interfere with the existence
of a Laguerre series of the type of (4.4). My subsequent arguments are based on the
simple, but nevertheless very consequential fact that power series and Laguerre series
differ substantially in the way how they are affected by singularities of the function
which is to be expanded.

Power series converge pointwise in their circles of convergence, and in the interior
of these circles they not only converge uniformly but they can also be used for the
computation of higher derivatives. Since, however, the higher derivatives of a func-
tion ultimately become infinite in magnitude at a singularity, the radius of the circle
of convergence is determined by the location of that singularity which is closest to the
expansion point.

If the function, which is to be expanded, possesses a singularity somewhere in the
complex plane C, the radius of convergence of its power series cannot be infinite.
This has immediate and undesirable consequence for integrals over the positive real
semi-axis [0,∞) as they typically occur in the theory of Laguerre polynomials or
in the radial parts of the three- and six-dimensional integrals in electronic structure
theory. If the semi-infinite integration interval is not contained completely in the cir-
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cle of convergence, the term-wise integration of such a power series either leads to
convergence to a wrong result or to divergence.

In that respect, Laguerre series have much more convenient properties precisely
because they in general do not converge pointwise. As discussed in more detail in
Appendix D, the existence of a Laguerre series of the type of (4.4) for some func-
tion f : C → C is guaranteed as long as f belongs to the weighted Hilbert space
L2

e−z zα
([0,∞)

)
defined by (D.8). Of course, f must not have a non-integrable sin-

gularity on the integration interval [0,∞), but singularities away from the positive
real semi-axis cause no problems. Loosely speaking, we can say that a Laguerre series
simply ignores all singularities which are not located on the integration contour. Power
series cannot do that. For them, all singularities matter even if they are far away from
the integration contour.

These differences between power series and Laguerre series, respectively, can be
illustrated by considering the following class of functions:

Fη(z; u, θ) = [
z2 + u2 − 2zu cos θ

]η
, z, u ∈ C, η, θ ∈ R. (6.1)

For η = 1/2, the function Fη(z; u, θ) is nothing but the explicit expression for the
difference |x − y| = [x2 + y2 − 2xy cos θ ]1/2 of two vectors x, y ∈ R

3 in spherical
polar coordinates in disguise, and for η = −1/2, it corresponds to the Coulomb or
Newton potential 1/|x − y|.

As long as Fη(z; u, θ) does not have a non-integrable singularity on the positive real
semi-axis, it belongs to the weighted Hilbert space L2

e−z zα
([0,∞)

)
defined in (D.8).

Therefore, Fη(z; u, θ) possesses a Laguerre series of the type of (4.4), although I was
not able to find a closed form expression for the coefficients of this expansion.

If η is a nonnegative integer, η = n with n ∈ N0, Fη(z; u, θ) is a polynomial in
z and therefore an analytic function for all z ∈ C. But if η ∈ R\N0, Fη(z; u, θ) has
singularities at

z1,2 =
{

cos θ ±
√

[cos θ ]2 − 1
}

u. (6.2)

Accordingly, the radius of convergence of its power series about z = 0 is equal to |u|.
The function Fη(z; u, θ) essentially corresponds to the well known generating func-

tion

[
1 − 2xt + t2]−λ =

∞∑

n=0

Cλ
n (x) tn, |t | < 1, λ �= 0, (6.3)

of the Gegenbauer polynomials [154, p. 222]. Thus, Fη(z; u, θ) possesses—depending
on the relative magnitudes of |z| and |u|—two complementary power series expan-
sions. For |z/u| < 1, it possesses a convergent power series in z/u,

Fη(z; u, θ) = u2η
∞∑

n=0

C−η
n

(
cos θ

)
(z/u)n, (6.4)
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and for |z/u| > 1, it possesses a convergent inverse power series in z/u,

Fη(z; u, θ) = z2η
∞∑

n=0

C−η
n

(
cos θ

)
(u/z)n, (6.5)

which can also be interpreted as a convergent power series in u/z.
Let us now assume that the singularities (6.2) of Fη(z; u, θ) with η ∈ R\N do

not lie on the integration interval [0,∞) and that we succeeded in constructing its
Laguerre series of the type of (4.4), possibly by purely numerical means. Then, the
application of the transformation formula (4.11) to this Laguerre series produces—if
necessary with the help of nonlinear sequence transformations as described in [207,
Sect. 6]—the power series (6.4), which converges for |z/u| < 1 and which diverges
for |u/z| < 1.

The small z series (6.4) accomplishes at least for |z/u| < 1 a separation of the vari-
ables z and u and therefore resembles a two-range addition theorem. For |z/u| > 1,
the large z series (6.5) also accomplishes this separation, but I see no obvious way of
computing the large z series (6.5) from the Laguerre series for Fη(z; u, θ). Instead, we
would have to construct a Laguerre series in u—this is possible since z and u play a
symmetrical role in Fη(z; u, θ)—from which we can compute the large z series (6.5)
which is also a small u series.

These considerations show that if we want to represent Fη(z; u, θ) by power series
in z, a two-range scenario cannot be avoided. It does not matter if we start from a
Laguerre series which provides a unique representation of Fη(z; u, θ) that is compu-
tationally useful in integrals over the whole real semi-axis. The singularities (6.2) of
Fη(z; u, θ)with η ∈ R\N imply that there can be no power series in z which converges
for all z ∈ C.

In the context of addition theorems, it may be of interest that the generating function
(6.3) of the Gegenbauer polynomials can be used for the construction of two-range
addition theorems in a relatively straightforward way. If we set λ = −ν/2, t = r</r>,
and x = cos θ in the generating function (6.3), we obtain the following Gegenbauer
expansion for the general power function

|r< ± r>|ν = rν>

∞∑

n=0

(∓1)n C−ν/2
n (cos θ) (r</r>)

n, ν ∈ R. (6.6)

The two-range form of this Gegenbauer expansion is a direct consequence of the con-
vergence condition |t | < 1 in (6.3) which translates to the convergence condition
r</r> < 1.

We can easily construct an addition theorem from the Gegenbauer expansion (6.6):
We only have to replace the Gegenbauer polynomials by Legendre polynomials. How-
ever, the practical realization of this obvious idea had apparently not been so easy.
As discussed by Steinborn and Filter [182, pp. 269–270], many authors had quite a
few problems with the determination of explicit expressions for the coefficients of
the expansion of Gegenbauer polynomials in terms of Legendre polynomials. Also
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Steinborn and Filter constructed very messy expressions for these coefficients which
are restricted to certain superscripts of the Gegenbauer polynomial [181, Sect. 3].

This is somewhat strange because already at that time a much more convenient
expression for these expansion coefficients had been available in the mathematical
literature. In Exercise 4 on p. 284 of Rainville’s book [165], one finds the following
relationship, where �m/2	 denotes the integral part of m/2 (compare [218, Eq. (5.2)]):

Cμ
m(x) =

�m/2	∑

s=0

(μ)m−s (μ− 1/2)s
(3/2)m−s s! (2m − 4s + 1) Pm−2s(x). (6.7)

This result can be proved via the explicit expression [36, Eq. 7.313.7 on p. 836] for
the integral

∫ 1
−1(1 − x)α(1 + x)ν−1/2Cμ

m(x)Cν
n (x)dx . One only has to set ν = 1/2

and perform the limit α → 0, which requires, however, some algebraic trickery.
If we now insert (6.7) into (6.6) and rearrange the order of summations, we obtain

after some algebra the following expansion in terms of Legendre polynomials:

|r< ± r>|ν = rν>

∞∑

�=0

(∓1)� P�(cos θ) (r</r>)
�

× (−ν/2)�
(3/2)�

2 F1
(
�− ν/2,−[ν + 1]/2; �+ 3/2; [r</r>]2). (6.8)

If ν is an even integer, ν = 2n with n ∈ N0, |r< ± r>|ν is a polynomial in both
r< and r< and therefore analytic. The infinite � series in (6.8) terminates because of
the Pochhammer symbol (−ν/2)� = (−n)�, implying � ≤ n. Similarly, the Gaussian
hypergeometric series 2 F1 in (6.8) terminates since �−ν/2 = �−n is either a negative
integer or zero.

In (6.8), we only have to replace the Legendre polynomials by spherical harmonics
via the so-called spherical harmonic addition theorem (2.4) to obtain an expansion
in terms of spherical harmonics, which had originally been derived by Sack [169,
Eq. (19)] by solving a partial differential equation and which converges as long as
r</r> < 1 holds:

|r< ± r>|ν = 4πrν+1
>

∞∑

�=0

(∓1)�
�∑

m=−�

[
Y m
� (r<)

]∗
Z m
� (r>)

× (−ν/2)�
(3/2)�

2 F1
(
�− ν/2,−[ν + 1]/2; �+ 3/2; [r</r>]2). (6.9)

This two-range addition theorem simplifies considerably and also assumes a one-
range form if ν is a positive even integer, ν = 2n with n ∈ N (see above or also
[202, pp. 1258–1259]). But for arbitrary ν ∈ R, (6.9) is a two-range addition theorem.
This is a direct consequence of its derivation via the generating function (6.3) of the
Gegenbauer polynomials. which is a power series in t with a nonzero, but finite radius
of convergence.
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This observation suggests the following interpretation: A two-range addition theo-
rem for a function f (r<± r>) having its only singularity at r<± r> = 0 corresponds
to a possibly rearranged power series in r< with a finite radius of convergence, and this
radius is determined by the condition r< < r>. This interpretation is also confirmed
by the differential operator (2.7) which had been the central tool for the derivation of
two-range addition theorems in [199,201] or in [202, Sect. 7].

This interpretation also applies to the addition theorem (6.9). For arbitrary ν �=
0, 2, 4, . . ., the general power function |r< ± r>|ν has a singularity for r< ± r> = 0,
and this singularity determines the radius of convergence of its power series in r< and
enforces a two-range form [199,201,202].

These conclusions about the nature of the addition theorem for the general power
function |r<±r>|ν help us to understand some essential features of addition theorems
for Slater-type functions that converge pointwise. For the sake of simplicity, let us first
consider the so-called 1s function

exp
(−β|r − r ′|) = exp

(−β
[
r2 + r ′2 − 2rr ′ cos θ

]1/2)
(6.10)

and let us also assume r ′ > 0. If Guseinov’s rearrangements are legitimate, then
exp

(−β|r − r ′|) must possess an expansion of the type of (4.1) in terms of Slater-type
functions {χm

n,�(γ, r)}n�m , which converges for the whole argument set R
3×R

3. Obvi-
ously, this is equivalent to requiring that exp

(
γ r

)
exp

(−β|r − r ′|) possesses a power
series about r = 0, which converges for all r ∈ [0,∞). Since, however, exp

(
γ r

)
is an

entire function, whose power series in r converges in the whole complex plane C, we
can ignore it for the moment. It is sufficient to analyze whether the 1s function (6.10)
possesses a convergent power series in r and for which values of r and r ′ this series
converges.

If we expand the exponential on the right-hand side of (6.10), we obtain:

exp
(−β|r − r ′|) =

∞∑

κ=0

(−β)κ
κ! [r2 + r ′2 − 2rr ′ cos θ ]κ/2. (6.11)

If the index κ is even, κ = 2k with k ∈ N0, then [r2 +r ′2 −2rr ′ cos θ ]k is a polynomial
in r which is obviously analytic for all r ∈ [0,∞). But if κ is odd, κ = 2k + 1 with
k ∈ N0, we are in trouble. We can use the generating function (6.3) of the Gegenbauer
polynomials to obtain a power series expansion in r/r ′

[r2 + r ′2 − 2rr ′ cos θ ]k+1/2 = r ′2k+1 [
1 + (r/r ′)2 − 2(r/r ′) cos θ

]k+1/2

= r ′2k+1
∞∑

j=0

C−k−1/2
j

(
cos θ

)
(r/r ′) j . (6.12)

Unfortunately, the Gegenbauer expansion (6.12) converges only if r/r ′ < 1 holds.
Therefore, the expansion obtained in this way corresponds to the case |r| < |r ′| of the
two-range addition theorem for |r ± r ′|k+1/2 which is a special case of (6.9).
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This has some far-reaching consequences for the analyticity of the 1s function
exp

(−β|r − r ′|) at r = 0. The odd powers in the power series expansion (6.11)
are singular for r − r ′ = 0. This fact makes it impossible to construct for either
exp

(−β|r − r ′|) or exp(γ r) exp
(−β|r − r ′|) with r ′ > 0 a power series in r that

converges for all r ∈ [0,∞). This is only possible in the one-center case r ′ = 0.
Consequently, a one-range addition theorem of the type of (4.1), which converges
pointwise for all r ∈ R

3 or equivalently for all r ∈ [0,∞), cannot exist for the 1s
function if r ′ �= 0.

An explicit expression for two-range addition theorem for the 1s function (6.10) can
be derived easily via the following Gegenbauer-type addition theorem for the modified
Bessel function w−νKν(γw) with w = [

ρ2 + r2 − 2rρ cos θ
]1/2

, 0 < ρ < r , and
ν ∈ C\N0 [154, pp. 106–107]:

w−νKν(γw) = 2ν γ−ν �(ν) (rρ)−ν
∞∑

n=0

Cν
n (cos θ) Iν+n(γρ) Kν+n(γ r). (6.13)

Here, Iν+n(γρ) and Kν+n(γ r) are modified Bessel function of the first and second
kind, respectively [154, p. 66].

The modified Bessel functionw−νKν(γw) in (6.13) is essentially a reduced Bessel
function k̂ν(γw) defined by (2.16). On the basis of (2.4, 6.7), and (6.13), the following
two-range addition theorem for reduced Bessel functions with half-integral orders can
be derived in a fairly straightforward way ([182, Eq. (3.4)] or, as an improved version
[218, Eq. (5.5)]):

k̂n−1/2
(
β|r< ± r>|) = (−1)n8π

(2n − 1)!! (βr<)
n−1/2(βr>)

n−1/2

×
∞∑

�=0

�∑

m=−�
(∓1)�

[
Y m
� (r</r<)

]∗
Y m
� (r>/r>)

×
n∑

ν=0

(−n)ν(1/2 − n)�+ν
ν!(3/2)�+ν (�+ 2ν − n + 1/2)

× I�+2ν−n+1/2(βr<)K�+2ν−n+1/2(βr>). (6.14)

This addition theorem was quite consequential for my later scientific interests. In my
diploma thesis [192], which was published in condensed form in [183], I used this
addition theorem for the evaluation of simple multicenter integrals of reduced Bessel
functions.

If we set m = 0 in (2.17), we obtain k̂1/2(z) = e−z . Thus, we only have to set n = 1
in (6.14) to obtain a two-range addition theorem for the 1s function. At first sight, nei-
ther the addition theorem (6.14) nor its special case with n = 1 looks like a power
series expansion in r<. However, the modified Bessel functions I�+2ν−n+1/2(βr<) is
defined by a power series in βr< [154, p. 66], which shows that the addition theorem
(6.14) is nothing but an infinite multitude of �-dependent rearranged power series
expansions in r<.
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The same conclusions hold for the following two-range addition theorem of a B
function [201, Eq. (5.11)] which can be viewed to be an anisotropic generalization of
the addition theorem (6.14) for a reduced Bessel function:

Bm
n,�(β, r< ± r>) = (2π)3/2

(−2)n+�
∞∑

�1=0

�1∑

m=−�1

(∓1)�1
[
Y m1
�1
(r<)

]∗

×
n+�∑

q=0

(−2)q

(n + �− q)! (βr<)
n+�−�1−q−1/2 In+�+�1−q+1/2(βr<)

×
�2=�max

2∑

�2=�min
2

(2)〈�2m + m1|�1m1|�m〉

×
min(q,��2)∑

s=0

(−1)s
(
��2

s

)
Bm+m1

q−�2−s,�2
(β, r>). (6.15)

Other two-range addition theorems of B functions are discussed in [218, Sects. 4 and
5].

In (6.15), 〈�2m + m1|�1m1|�m〉 is a so-called Gaunt coefficient [31] which corre-
sponds to the integral of the product of three spherical harmonics over the surface of
the unit sphere in R

3. The selection rules of this Gaunt coefficient (see for example
[215, Sect. 3] or [202, Appendix C]) imply that ��2 = (� + �1 − �2)/2 in (6.15) is
always either zero or a positive integer. The symbol

∑
(2) in (6.15) indicates that the

summation proceeds in steps of two.
Since a Slater-type function with an integral principal quantum number can accord-

ing to (2.20) be expressed as a finite sum of B functions, we can conclude that the
two-range addition theorem of a Slater-type function obtained by forming linear com-
binations of (6.15) is nothing but an infinite multitude of rearranged power series
expansions in r<.

These considerations apply also to Slater-type functions χM
N ,L(β, r< ± r>) with

nonintegral principal quantum numbers N or to exp(γ r)χM
N ,L(β, r< ± r>). These

functions are obviously singular for r< ± r> = 0, which implies that their power
series expansions about r< = 0 can only converge for r< < r>. Consequently, an
expansion of the type of (4.1) in terms of Slater-type functions {χm

n,�(γ, r)}n,�,m with
integral principal quantum numbers n and a common scaling parameter γ > 0, that
converges pointwise for all r, r ′ ∈ R

3, cannot exist.
These considerations can be generalized further: Let us assume that f (r ± r ′)with

r ′ > 0 is singular for r ± r ′ = 0 but analytic elsewhere. Accordingly, a power series
expansion for either f (r ± r ′) or for eγ r f (r ± r ′) about r = 0 can only converge for
r < r ′. This rules out the existence of an expansion of f (r ± r ′) in terms of Slater-
type functions χm

n,�(γ, r)} with integral principal quantum numbers n and a common

scaling parameter γ > 0, that converges pointwise for all r, r ′ ∈ R
3.

As shown in [199,201] or in [202, Sect. 7], pointwise convergent addition theorems
are nothing but rearranged Taylor expansions. Thus, the assumed singularity of such
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an f (r ± r ′) for r ± r ′ = 0 implies that a pointwise convergent addition theorem
must have a two-range form.

Slater-type functions as well as all the other commonly used exponentially decaying
basis functions have a singularity at the origin. Consequently, their pointwise conver-
gent addition theorems must have a two-range form. In contrast, the Gaussian function
exp(−β|r ± r ′|2) is analytic for all r, r ′ ∈ R

3. Consequently, it possesses a one-range
addition theorem that converges pointwise [142, Eq. (8)].

It makes no difference if we start from a Laguerre series for a given function. If we
apply the transformation formula (4.11) to the series expansions (3.10) for the angular
projections (3.9) of Guseinov’s one-range addition theorem (3.1) for χM

N ,L(β, r ± r ′),
we obtain power series expansions in r for the angular projections which converge or
diverge, depending on the relative magnitude of r and r ′.

Let us now assume that f (r ± r ′) is a function which is singular for r ± r ′ = 0
and that we know its two-range addition theorem. If we accept the premise that its
two-range addition theorem is nothing but a multitude of rearranged power series
expansions in r that converge for r/r ′ < 1, then the uniqueness of a power series
in the interior of its circle of convergence implies that Guseinov’s rearrangements of
one-range addition theorems cannot produce anything new. We obtain a two-range
addition theorem for exp(γ r) f (r ± r ′) by forming the Cauchy product of the power
series for exp(γ r) with the possibly rearranged �-dependent power series in r that
occur in the two-range addition theorem for f (r ± r ′). In the final step, we only have
to multiply the resulting addition theorem for exp(γ r) f (r ± r ′) by exp(−γ r) or its
power series to arrive at the possibly rearranged addition theorem for f (r ± r ′) from
which we started.

The discussion of this Section may create the false impression that singularities
of basis functions for electronic structure calculations are something very negative.
This is certainly true in the case of analytical manipulations since virtually all manip-
ulations becomes more difficult in the presence of singularities. However, Kato [141]
had shown that the singularities of an atomic or molecular Hamiltonian translate to
corresponding singularities of the eigenfunctions, commonly called cusps. But a cusp
is just another word for a singularity. Thus, the ability of basis functions to reproduce
the singularities of exact wave functions is of considerable importance for the rate of
convergence of an electronic structure calculation.

Gaussian functions do not have singularities like exponentially decaying functions.
In my opinion, this is the main reason why their multicenter integrals can be eval-
uated much more easily than the corresponding integrals of exponentially decaying
functions. At the same time, the absence of singularities is also a major drawback of
Gaussian functions. Many Gaussian functions are needed to approximate functions
possessing singularities with sufficient accuracy.

7 Numerical implications of truncated expansions

The analysis of Sects. 1 and 5 shows that the one-center expansion (1.2) of a Slater-type
function χM

N ,L(β, r) in terms of Slater-type functions {χM
n,L(γ, r)}∞n=L+1 with integral

principal quantum numbers n ∈ N and a common scaling parameter γ > 0 does not
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exist if the principal quantum number N is nonintegral. The leading coefficients of
(1.2) are zero, and the higher coefficients are infinite in magnitude.

The nonexistance of (1.2) is a direct consequence of the fact that the radial part
of χM

N ,L(β, r) with N ∈ R\N is not analytic at r = 0. As shown in Sect. 5, this
nonexistance can also be shown by applying the transformation formula (4.11) to the
radial part of a k-dependent one-center expansion (5.4) for χM

N ,L(β, r). In the case
of nonintegral quantum numbers, the transformation formula (4.11) produces power
series coefficients that are either zero or infinite in magnitude.

In Sect. 6 it was shown that the rearrangement of a k-dependent one-range addi-
tion theorem (3.1), which is a much more complicated expansion than its one-cen-
ter limit (5.4), also does not produce the desired result. Both χM

N ,L(β, r ± r ′) and

exp(γ r)χM
N ,L(β, r ± r ′) with r ′ > 0 are analytic at r = 0. Consequently, the appli-

cation of the transformation formula (4.11) to the series expansions of the angular
projections of exp(γ r)χM

N ,L(β, r ± r ′) produces mathematically meaningful power
series expansions in r . Unfortunately, these power series expansions have a finite radius
of convergence and they converge only for r < r ′. This follows at once from the fact
that both χM

N ,L(β, r ± r ′) and exp(γ r)χM
N ,L(β, r ± r ′) are singular for r ± r ′ = 0.

Accordingly, Guseinov’s rearrangements transform a one-range addition theorem for
χM

N ,L(β, r ± r ′) to a two-range addition theorem. This is certainly not what Guseinov
had tried to achieve.

But these observations do not tell the whole truth, and in particular they do
not imply that Guseinov’s approach is necessarily doomed. There is overwhelm-
ing evidence that Guseinov never transformed a complete one-range addition theo-
rem of the type of (3.1) containing an infinite number of terms. Instead, Guseinov
only transformed truncations of either addition theorems or their one-center lim-
its, which all contain a finite number of terms only. Thus, Guseinov exclusively
did his rearrangements with an analog of (4.8), which transforms a truncated La-
guerre series of the type of (4.6) to a polynomial of the type of (4.9). To the best
of my knowledge, Guseinov never used the complete transformation formula (4.11)
and only claimed—probably on the basis of an insufficient amount of numerical
evidence—that his transformed truncations remain meaningful in the limit of infi-
nite expansion lengths, but he never provided convincing evidence supporting his
claim.

The radial parts of the angular projections of Guseinov’s truncations are apart from
a common exponential exp(−γ r) finite linear combinations of generalized Laguerre
polynomials in 2γ r . Thus, for finite truncation orders N , Guseinov’s rearrangements
are legitimate and produce polynomials in r .

In actual calculations, we always have to truncate infinite series expansions after
a finite number of terms unless we are fortunate enough to find a way of expressing
a series in closed form. Therefore, a skeptical reader might argue that Guseinov’s
approach is completely satisfactory from a practical point of view, and that my insis-
tence on the convergence and existence of infinite series expansions, which in actual
calculations have to be truncated and thus do not really occur in practice, is nothing
but a mathematical over-sophistication.
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However, Guseinov’s rearranged addition theorems do not only suffer from the fact
that in the limit of infinite expansions lengths they either do not exist or that they
lose their one-range nature. These rearrangements cause also other problems which
become particularly evident if one tries to achieve a (very) high accuracy by including
a large number of terms in Guseinov’s truncations.

One serious problem was already discussed in Sect. 3. As explained there, I have
grave doubts that a Guseinov function k�

m
n,�(γ, r) can be expressed in a numerically

stable way as a finite sum of Slater-type functions
{
χm

n′,�(γ, r)
}n

n′=�+1 via (3.2) if the
index n is large. This applies also to the substitution of overlap integrals involving
Guseinov functions by finite sums of overlap integrals involving Slater-type func-
tions via (3.3). Both (3.2) and (3.3) are based on the explicit expression (D.2) of the
generalized Laguerre polynomial L(α)n (z), which tends to become numerically unsta-
ble if its index n becomes large. The reason is that the coefficients of orthogonal
polynomials have strictly alternating signs.

The substitution of a function set, which is complete and orthonormal in a given
Hilbert space, by a function set, which is only complete, but not orthogonal, also causes
some nontrivial problems. In Sect. 3 it was emphasized that orthogonal expansions
tend to be computationally well behaved because Parseval’s equality (3.6) guarantees
that their series coefficients are bounded in magnitude and vanish for large indices.
In contrast, the series coefficients of nonorthogonal expansions are not necessarily
bounded in magnitude and do not necessarily vanish with increasing index.

These complications with unbounded coefficients can be demonstrated convinc-
ingly by considering a truncation of the comparatively simple one-center expansion
(5.4). This ansatz corresponds to the following approximation of a Slater-type function
χM

N ,L(β, r) with an in general nonintegral principal quantum number N ∈ R\N by a
finite sum of Guseinov functions:

χM
N ,L(β, r) ≈ (2γ )L+(k+3)/2 βN−1

[β + γ ]N+L+k+2

�(N + L + k + 2)

(2L + k + 2)!

×
N∑

ν=0

[
(ν + 2L + k + 2)!

ν!
]1/2

k�
M
ν+L+1,L(γ, r)

×2 F1

(
−ν, N + L + k + 2; 2L + k + 3; 2γ

β + γ

)
. (7.1)

If χM
N ,L(β, r) belongs to the weighted Hilbert space L2

rk (R
3) defined by (2.15), this

N -dependent approximation is mathematically meaningful, and we can be sure that
it converges in the mean with respect to the norm of L2

rk (R
3) as N → ∞.

We only have to cancel the spherical harmonics and remove the exponential on the
right-hand side of (7.1) to see that the finite sum on the right-hand side corresponds
to a truncated Laguerre series of the type of (4.6). If we now apply the transformation
formula (4.8) to this truncated Laguerre series, we ultimately obtain an approximation
of the Slater-type function χM

N ,L(β, r) with N ∈ R\N as a finite linear combination

of Slater-type functions χM
n,L(γ, r) with integral principal quantum numbers n.
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For finite values of the truncation order N , all coefficients of this approximation
to χM

N ,L(β, r) are well defined and finite. Unfortunately, this does not imply that this
expression remains well behaved in the limit N → ∞. For large values of N , the
leading coefficients of the resulting expression approach zero and the higher coeffi-
cients diverge in magnitude.

This can also be demonstrated by inserting the expansion coefficients of the
Laguerre series (5.2) for zρeuz with nonintegral ρ ∈ R\N0 into theμ series in (4.11). If
we replace the exact expressions for the Laguerre series coefficients of the later terms
of the μ series with indices μ ≥ M by their leading order asymptotic approximations
(5.20), we obtain the following leading order asymptotic approximation:

∞∑

μ=M

(α + ν + 1)μ
μ! λ

(α)
μ+ν ∼ �(ρ + α + 1)

�(−ρ)�(α + ν + 1)

∞∑

μ=M

μν−ρ−1, M → ∞. (7.2)

The infinite series on the right-hand side is nothing but the tail of the Dirichlet series
ζ(s) = ∑∞

n=0(n + 1)−s for the Riemann zeta function with s = ρ − ν + 1 (see for
example [154, p. 21]). As is well known, the Dirichlet series for ζ(s) converges for
�(s) > 1 and diverges for �(s) ≤ 1. Thus, the series (7.2) converges for ν < ρ, and
it diverges for ν > ρ.

If �(s) is only slightly larger than 1, the convergence of the Dirichlet series∑∞
n=0(n + 1)−s can become prohibitively slow (the horrifying example of the

Dirichlet series with s = 1.01 is discussed in [214, p. 194]). The slowest convergence
on the right-hand side of (7.2) occurs for the largest value of ν satisfying ν < ρ, i.e.,
for ν = �ρ	, where �ρ	 is the integral part of ρ. In this case, convergence can become
so slow that it is practically impossible to evaluate the series on the right-hand of (7.2)
with sufficient accuracy by adding up its terms successively. Instead, one has to employ
suitable convergence acceleration techniques as for example the Euler-Maclaurin for-
mula (see for example [214, Sect. 2] and references therein). In this context, it may be
of interest that the Euler-Maclaurin formula for the Riemann zeta function and other
asymptotic approximations to truncation errors of series representations for special
functions can also be derived by solving systems of linear equations [203].

A skeptical reader might argue that my digression on the convergence properties
of the Dirichlet series for the Riemann zeta is of no interest in the context of molec-
ular electronic structure. However, I personally became interested in the Riemann
zeta function because of certain infinite series expansions occurring in expressions
for molecular integrals of exponentially decaying functions involving the Coulomb
potential. The convergence properties of these expansions closely resemble that of the
Dirichlet series for ζ(s)with �(s) not much larger than 1 (see for example [38, Tables
I, II, V, VI, and VII] or [184, Table 1]).

The slow convergence of the series on the right-side of (7.2) for ν only slightly
smaller than ρ makes it (very) hard or even practically impossible to observe by
purely numerical means that the leading terms of the formal power series for zρeuz

with nonintegral ρ ∈ R\N0 vanish.
Moreover, the series on the right-hand side of (7.2) diverges for ν > ρ, but it

diverges quite slowly if ν is only slightly larger than ρ. Quite a few terms are needed
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to observe the divergence of such an infinite series in the case of small or moderately
large values of ν. There is also the additional complication that it is by no means easy
to establish unambiguously the divergence of a series of the type of (7.2) if only a
finite number of terms are available [158].

A further complication occurs if we do not rearrange an infinite Laguerre series
of the type of (4.4) via the complete transformation formula (4.11), which uses all
Laguerre series coefficients λ(α)n with n ∈ N0, but via (4.8) which transforms the
partial sum fM (z) of the Laguerre series (4.4) to a polynomial of degree M in z. Since
the transformation formula (4.8) only uses the coefficients λ(α)0 , λ

(α)
1 , . . . , λ

(α)
M and

since M is in practice only moderately large, neither the vanishing of power series
coefficients with ν < ρ nor the divergence of the coefficients with ν > ρ can be
observed easily (everything remains finite). Consequently, I would not be surprised if
Guseinov and Mamedov, who certainly had done test calculations, simply overlooked
the nonexistence of their one-center expansion [122, Eq. (4)] in the limit N → ∞.

It would have been interesting if Guseinov and Mamedov had applied sequence
transformations, because this could have helped them to see the vanishing or the
divergence of their coefficients more clearly. My suggestion may sound paradoxical
because sequence transformations are normally used to accelerate convergence or to
associate a finite value to a divergent sequence or series. It was, however, shown in
recent articles by Beckermann, Kalyagin, Matos, and Wielonsky [8], Beckermann,
Matos, and Wielonsky [9], Brezinski [16], Brezinski and Redivo Zaglia [17], and
Guilpin, Gacougnolle, and Simon [39] that sequence transformations can also be used
to determine the location of discontinuities of functions more precisely or to show
them more clearly. By a slight abuse of language, such an application of sequence
transformations could be called acceleration of divergence.

Guseinov’s and Mamedov’s inability of observing any problems with their rear-
ranged one-center expansions highlights once more the dangers of relying entirely on
numerical test calculations without trying to understand the subtleties of the underlying
mathematics.

One should also take into account that the apparent convergence of the sum of the
leading terms of an infinite series to the correct limit does not prove the existence
of this series, let alone its converges to the correct limit. As discussed in Appendix
E, the phenomenon of semiconvergence—initial apparent convergence of the leading
terms of an infinite series followed by divergence if more terms are included—is well
established in the literature.

The examples in Appendix E on semiconvergence and related phenomena should
suffice to convince even a skeptic that misinterpretations of seemingly convincing
numerical evidence can happen easily. It also happened to me. In [196] I misinter-
preted my summation results obtained by applying Wynn’s epsilon algorithm [219],
the d variant [195, Eq. (7.3-9)] of Levin’s transformation [151], and the d variant
of the so-called S transformation [195, Eq. (8.4-4)] to the partial sum of the first
22 perturbation series coefficients of the factorially divergent Rayleigh-Schrödinger
perturbation series for the ground state energy of the quartic anharmonic oscillator.
All calculations were done in FORTRAN 77 on a Cyber 180-995 E with a precision
of approximately 29 decimal digits (for more details, see [205, pp. 7–8]).
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Unfortunately, my conclusion in [196] that Levin’s transformation produces a con-
vergent result—although perfectly plausible at that time—was premature and based
on the incomplete evidence provided by the first 22 perturbation series coefficients. In
[213], we repeated my previous calculations using now 200 perturbation series coef-
ficients calculated exactly with the help of Maple’s rational arithmetic, and we did the
summation calculations in Maple with a precision of up to 1000 decimal digits and
transformation orders as high as k = 199. These calculations showed unambiguously
that Levin’s transformation failed to produce convergent results in the case of higher
transformation orders, and that this failure could not be attributed to numerical insta-
bilities. The divergence of Levin’s transformation was also confirmed in [197, Table
2]. A similar divergence of Levin’s transformation was later observed by Čížek, Zama-
stil, and Skála [19, p. 965] in the case of the hydrogen atom in an external magnetic
field.

Of course, my misinterpretation in [196] or similar problems of other authors do
not rule out the possibility that carefully conducted purely numerical investigations
can provide valuable theoretical insight. In [10] we formulated with the help of some
numerical techniques developed in [200] the conjecture that the factorially divergent
perturbation expansion of a certain non-Hermitian PT -symmetric anharmonic oscil-
lator is a Stieltjes series. Recently, our conjecture, whose correctness implies the Padé
summability of this perturbation expansion, was proved rigorously by Grecchi, Maioli,
and Martinez [37].

Let us now assume that we rearrange a truncation (7.1) of the one-center expan-
sion (5.4) for χM

N ,L(β, r)with nonintegral principal quantum number N ∈ R\N. If the
truncation order N in (7.1) is small, its increase will certainly improve the accuracy of
the rearranged truncation. However, for sufficiently large values of N , the behavior of
the rearranged truncations changes. The leading order asymptotic approximation (7.2)
implies that the accuracy ultimately deteriorates with increasing N , and for N → ∞,
the rearranged truncations ultimately become mathematically meaningless. Thus, rear-
ranged truncations of the one-center expansion (5.4) are semiconvergent with respect
to a variation of N for nonintegral principal quantum numbers N ∈ R\N.

The semiconvergence of the rearranged truncations implies that they can be used
for computational purposes at least for sufficiently small truncation orders N . But
obviously, one should be careful. It is necessary to investigate for which values of
N the intrinsic pathologies of the rearranged expansions become intolerable. The
leading order asymptotic approximation (7.2) indicates that even fairly large values of
N should produce acceptable results, but additional and in particular more detailed
numerical investigations, which also try to estimate the detrimental effect of possible
numerical instabilities, would certainly be desirable.

One can look at the rearrangements of truncations (7.1) also from a different per-
spective. As discussed in Appendix C, finite approximations to a function f ∈ H of
the type of (C.1) in terms of a function set, that is complete but nonorthogonal in some
Hilbert space H , can be constructed by minimizing the mean square deviation (C.2),
although we cannot tacitly assume that these finite approximations can be extended
to infinite expansions of the type of (C.3).

Thus, is certainly legitimate to approximate a Slater-type function χM
N ,L(β, r) with

a nonintegral principal quantum number N ∈ R\N by a finite linear combination of
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Slater-type functions χM
n,L(γ, r)with integral principal quantum numbers n. However,

a determination of the coefficients of these approximations via a purely numerical min-
imization of the mean square deviation does not look like a promising computational
strategy in the context of addition theorems or multicenter integrals. In such a case,
Guseinov’s approach is most likely the better alternative.

The truncations (7.1) of the one-center expansion (5.4) are simple enough to per-
mit a detailed mathematical analysis of Guseinov’s rearrangements. But we would of
course be much more interested in understanding the subtleties of the rearrangements
of the truncations

χM
N ,L(β, r ± r ′) ≈

N∑

n=1

n−1∑

�=0

�∑

m=−�
kXN ,L ,M

n,�,m (γ, β,±r ′) k�
m
n,�(γ, r) (7.3)

of a k-dependent addition theorem (3.1). The overlap integral kXN ,L ,M
n,�,m (γ, β,±r ′) in

(7.3) is defined by by (3.1b).
Since the k-dependent addition theorems (3.1) are genuine two-center problems, it

is not at all easy to do a rigorous analysis of the mathematical properties of rearrange-
ments of the truncations (7.3). Let me emphasize once more that there is a fundamental
difference between the one-center case analyzed in Sect. 5 and the two-center case
analyzed in Sect. 6. In the limit of infinite truncation orders N , Guseinov’s rearrange-
ments of one-center expansions for Slater-type functions with nonintegral principal
quantum numbers produce mathematically meaningless expansions, and for finite val-
ues of N these rearrangements are semiconvergent.

In the two-center case, Guseinov’s rearrangements of one-range addition theorems
produce mathematically meaningful expansions, but they only converge for r < r ′.
Consequently, these expansions correspond to the small r parts of two-range addition
theorems. This is certainly not what Guseinov had tried to achieve.

Apart from being an undesirable result, the two-center nature of rearrangements
of the truncations (7.3) in the limit of infinite truncation orders N is also a possible
source of problems. For finite values of N , the truncations (7.3) are obviously one-
range addition theorems: The vector r occurs exclusively in the Guseinov functions

k�
m
n,�(γ, r), and r ′ occurs exclusively in the overlap integral kXN ,L ,M

n,�,m (γ, β,±r ′).
This applies also to their rearrangements. The vectors r and r ′ are still separated even
if the Guseinov functions are replaced by Slater-type functions with integral principle
quantum numbers via (3.2) and the overlap integrals involving Guseinov functions by
overlap integrals of Slater-type functions via (3.3).

But in the limit of infinite truncation orders N , a change resembling a phase
transition takes place: The resulting rearranged expansions lose their advantageous
one-range nature and converge to two-range addition theorems. As is well known, the
decay rate of the coefficients γn of a power series f (z) = ∑∞

n=0 γnzn as n → ∞ deter-
mines the convergence type of this series: If γn decays factorially as n → ∞, f (z)
is entire, and if γn decays only exponentially, the radius of convergence of its power
series is finite. Thus, the expansion coefficients of the Slater-type functions χm

n,�(γ, r)

in Guseinov’s rearranged addition theorems apparently decay at most exponentially
since these expansions only converge for r < r ′.
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Otherwise, very little can be said about the N -dependence of Guseinov’s rear-
rangements of the truncations (7.3). The problem is that in Sect. 6 the mathematical
properties of Guseinov’s rearranged addition theorems were analyzed via the singu-
larity of a Slater-type function χM

N ,L(β, r ± r ′) for r ± r ′ = 0, but not via the trans-
formation formula (4.11). We would need the large index asymptotics of the overlap
integrals kXN ,L ,M

n,�,m (γ, β,±r ′) in (3.1). On the basis of our current level of understand-
ing, such an asymptotic analysis seems to be out of reach. We do not have anything
resembling a two-center analog of the leading order asymptotic approximation (7.2)
which turned out to be so very useful in the one-center case.

Guseinov’s rearrangements of one-range addition theorems can be used to construct
approximations to a Slater-type function χM

N ,L(β, r ±r ′)with both integral and nonin-
tegral principal quantum numbers in terms of a finite number of Slater-type functions
χm

n,�(γ, r)with integral principal quantum numbers n. As in the one-center case, such
a finite approximation of the type of (C.1) can—at least in principle—be constructed
by minimizing the mean square deviation (C.2), although such a numerical determi-
nation of the expansion coefficients is most likely not a very good idea in the context
of multicenter integrals.

But there remains a principal problem. If we use a two-range addition theorem in a
multicenter integral and do not take into account its two-range nature by splitting up
the integration interval of the resulting radial integration, we may well end up either
with convergence to the wrong limit or even with a divergent series expansion for the
multicenter integral.

For finite truncation orders N , Guseinov’s rearrangements of the truncations (7.3)
are one-range addition theorems since the vectors r and r ′ are completely separated.
Thus, these rearranged truncations can safely be used in multicenter integrals, and it
is not necessary to split up the integration contour. But in the limit N → ∞, these
rearrangements lose their convenient one-range property. Consequently, their careless
use in a multicenter integral without splitting up the integration contour may produce
either a wrong or a divergent result.

It makes sense to assume that the ultimate two-range nature of the rearrangements
of the truncations (7.3) becomes noticeable already for sufficiently large, but finite
values of N . It is therefore conceivable that multicenter integrals, whose integrands
contain a rearrangement of a truncations (7.3), are semiconvergent with respect to a
variation of N . Obviously, the exact behavior of these integrals as N → ∞ certainly
does not only depend on the approximation to the addition theorem, but also on the
remaining integrand. This certainly makes a detailed analysis even more difficult.

These considerations are for the moment essentially speculation. A sufficiently rig-
orous analysis of this possible semiconvergence cannot be done yet. We lack some
necessary mathematical tools such as a two-center analog of the leading order asymp-
totic expansion (7.2) which was so very useful in the one-center case.

8 Summary and outlook

Infinite dimensional function spaces and in particular Hilbert spaces are of consid-
erable importance not only in quantum theory, but also in approximation theory and
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in functional analysis. Accordingly, there is an extensive literature discussing these
function spaces, both from a purely mathematical point of view and also from the
perspective of quantum physics.

It is an obvious idea to try to understand the properties of these admittedly com-
plicated function spaces by emphasizing the analogies to the simpler n-dimensional
real and complex vector spaces R

n and C
n , respectively. Often, this approach provides

valuable insight. Nevertheless, there are dangers. Infinite dimensional function spaces
possess certain peculiarities which do not exist in the case of n-dimensional vector
spaces. Naive generalizations and overly optimistic analogies can therefore be badly
misleading.

For example, in the n-dimensional vector spaces R
n or C

n any set of n linearly
independent vectors can be used as a basis, which means that every vector belonging
to either R

n or C
n can be expressed as a linear combination of n linearly independent

vectors. There is also no principal problem if we want to replace one basis by another:
All linearly independent sets of n vectors are in that respect equivalent. Orthogonal-
ity of the basis vectors in n-dimensional vector spaces is convenient since it greatly
simplifies certain operations, but it is not really essential.

In infinite dimensional function spaces, the situation is much more complicated.
Firstly, a basis now consists of an infinite number of elements which always raises the
question of convergence. Moreover, there are different convergence types, which are
in general incompatible. Secondly, a basis in a function space has to be complete, i.e.,
the span of this basis has to be dense in the function space.

As discussed in Appendix C, the completeness of a basis suffices to guarantee that
finite expansion of the type of (C.1) exist. In addition, completeness implies that the
corresponding mean square deviation (C.2) can be made as small as we like by increas-
ing the length of the finite expansion. Therefore, it is a seemingly obvious conclusion
that the completeness of a basis implies the existence of infinite expansions of the type
of (C.3) in terms of this basis. Unfortunately, this conclusion is wrong. The existence
of an infinite expansion is only guaranteed if the basis is not only complete, but also
orthogonal. These facts are well known, but nevertheless often ignored. They are also
the basis of this article.

In [41–44,46], Guseinov derived one-range addition theorems for Slater-type func-
tions χM

N ,L(β, r ± r ′) with integral and nonintegral principal quantum numbers N by
expanding them in terms of his Laguerre-type functions {k�

m
n,�(γ, r)}n,�,m . For a given

k = −1, 0, 1, 2, . . ., these functions defined by (2.13) are complete and orthonormal
in the corresponding weighted Hilbert space L2

rk (R
3) defined by (2.15). Guseinov’s

approach is mathematically sound as long as the Slater-type function χM
N ,L(β, r ± r ′)

belongs to L2
rk (R

3). Such a one-range addition theorem converges in the mean with

respect to the norm of the Hilbert space L2
rk (R

3), but not necessarily pointwise.
However, Guseinov considered it to be advantageous to replace in his k-dependent

addition theorems the complete and orthonormal functions {k�
m
n,�(γ, r)}n,�,m , whose

radial parts are according to (2.13) essentially generalized Laguerre polynomials, by
complete, but nonorthogonal Slater-type functions {χm

n,�(γ, r)}n,�,m with integral prin-
cipal quantum numbers via (3.2). Ultimately, Guseinov’s approach corresponds to the
replacement of a Laguerre series of the type of (4.4) by a power series of the type of
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(4.5). Unfortunately, this approach is not necessarily legitimate and can easily lead to
nontrivial convergence and existence problems, which had already been discussed in
[207], albeit in a less detailed way.

Because of these principal problems, Guseinov cannot tacitly assume that the trans-
formation of his one-range addition theorems, which are expansions in terms of his
complete and orthonormal Laguerre-type functions, to expansions of the type of (4.1)
in terms of the complete, but nonorthogonal Slater-type functions are necessarily legit-
imate. This has to be demonstrated explicitly, but Guseinov had only done this in a
very superficial way. There is considerable evidence that Guseinov et al. had only done
some purely numerical tests.

The deficiencies of Guseinov’s approach become particularly evident in the case
of the one-center expansion (1.2) for a Slater-type function χM

N ,L(β, r) with an in
general nonintegral principal quantum number N in terms of Slater-type functions
{χM

n,L(γ, r)}∞n=L+1 with integral principal quantum numbers n and an in general dif-
ferent common scaling parameter γ �= β > 0. Guseinov [46, Eq. (21)] had constructed
this expansion by performing the one-center limit of a rearranged truncated addition
theorem for Slater-type functions [46, Eq. (15)]. This one-center limit was later used
by Guseinov and Mamedov [122] for the construction of series expansions for overlap
integrals of Slater-type functions with nonintegral principal quantum numbers.

It is, however, trivially simple to show that Guseinov’s one-center expansion (1.2)
does not exist if the principal quantum number N is nonintegral. As discussed in
Sect. 1, this follows at once from the simple and yet consequential fact that expan-
sions in terms of Slater-type functions with integral principal quantum numbers and
a common scaling parameter are nothing but power series expansions about r = 0 in
disguise. Moreover, every power series is also a Taylor series for some function (see
for example [155]).

This fact is extremely helpful because the factors, which govern the analyticity of
a function, are fairly well understood. It is trivially simple to show that the radial part
of exp(γ r)χM

N ,L(β, r) is not analytic in the sense of complex analysis at r = 0 if the
principal quantum number N is not a positive integer satisfying N ≥ L + 1. Thus, a
power series in r for exp(γ r)χM

N ,L(β, r) with N ∈ R\N cannot exist, which implies

that the one-center expansion (1.2) for χM
N ,L(β, r) does not exist if N ∈ R\N.

We arrive at the same conclusion if we apply the transformation formula (4.11)
to the k-dependent expansions (5.4) for χM

N ,L(β, r) in terms of Guseinov’s complete
and orthonormal functions or to the equivalent Laguerre series (5.1) for zρeuz , from
which (5.4) was derived. As discussed in Sect. 5, the large index asymptotics of the
coefficients in the Laguerre series (5.1) clearly shows that the expansion (1.2) for
χM

N ,L(β, r) in terms of Slater-type functions does not exist if N is nonintegral.
In principle, the same strategy could also be pursued if one-range addition theorems

for χM
N ,L(β, r ± r ′), which are k-dependent two-center expansions in terms of Gu-

seinov’s complete and orthonormal function {k�
m
n,�(γ, r)}n,�,m , are rearranged. The

expansion coefficients of these addition theorems are overlap integrals. On the basis of
our current level of mathematical understanding, it is, however, very difficult or even
practically impossible to determine the large index asymptotics of these complicated
integrals. Fortunately, by means of an indirect approach it is nevertheless possible to
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arrive at some useful conclusions about the validity of Guseinov’s rearrangements of
his one-range addition theorems.

My key argument in Sect. 6 is again analyticity in the sense of complex analysis.
If a function f : C → C has a singularity somewhere in the complex plane, its power
series about the origin cannot have an infinite radius of convergence. In contrast, sin-
gularities affect Laguerre expansions only if they are nonintegrable and located on the
integration contour [0,∞).

Both exp(−β|r ± r ′|) as well as exp(γ r) exp(−β|r ± r ′|) are for r ′ > 0 analytic
at r = 0. Accordingly, these functions possess power series expansions in r which
converge in a vicinity of the expansion point r = 0. However, exp(−β|r ± r ′|) is
singular for r ± r ′ = 0. Thus, the power series expansions for both exp(−β|r ± r ′|)
and exp(γ r) exp(−β|r ± r ′|) converge only for r < r ′. This implies that a one-range
addition theorem for the 1s function exp(−β|r ± r ′|), which converges pointwise for
all r, r ′ ∈ R

3 or equivalently for all r, r ′ ∈ [0,∞), cannot exist.
These considerations apply also to other Slater-type functions χM

N ,L(β, r ±r ′)with
integral or nonintegral principal quantum numbers N . If r ′ > 0, these functions as
well as the related functions exp(γ r)χM

N ,L(β, r ± r ′) are analytic at r = 0, but they
also have a singularity at r ± r ′ = 0. Therefore, an expansion of the type of (4.1) in
terms of Slater-type functions with integral principal quantum numbers and a common
scaling parameter, that converges pointwise for all r, r ′ ∈ R

3, cannot exist. Instead,
we obtain the small r part of a two-range addition theorem, either by doing a Taylor
expansion of χM

N ,L(β, r ± r ′) about r = 0 or by applying the transformation formula
(4.11) to the angular projections (3.10).

The results of Sects. 5 and 6 can be summarized as follows: The one-center expan-
sion (1.2) for χM

N ,L(β, r) does not exist if N is nonintegral, and the expansion (4.1)

for χM
N ,L(β, r ± r ′), which looks like a one-range addition theorem, has a two-range

form since it converges only for |r| < |r ′|. Therefore, one might be tempted to dismiss
Guseinov’s rearrangements of expansions in terms of generalized Laguerre polyno-
mials as being both useless and dangerous.

However, the situation is more complicated than it may look at first sight. As dis-
cussed in Sect. 7, Guseinov apparently never rearranged infinite one-center expansions
of the type of (5.4) or infinite one-range addition theorems of the type of (3.4), although
this can be done in a systematic way with the help of the transformation formula (4.11).

Instead, Guseinov exclusively rearranged finite truncations of his infinite expan-
sions such as the truncation (7.3) of the addition theorem (3.7) or the truncation (7.1)
of its one-center limit (5.4), all with a finite truncation order N . This is highly conse-
quential. If we replace in a truncated Laguerre series of the type of (4.6) the generalized
Laguerre polynomials by powers, for example via (4.8), there can be no convergence
or existence problems because the resulting expression is simply a polynomial.

Accordingly, Guseinov’s rearrangements of truncated one-center and two-cen-
ter expansions produce approximations to χM

N ,L(β, r) and χM
N ,L(β, r ± r ′), respec-

tively, that consist of a finite number of Slater-type functions χm
n,�(γ, r) with integral

principal quantum numbers and a common scaling parameter. Since only a finite
number of terms is transformed in these rearrangements, there can be no existence
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problems. Nevertheless, Guseinov’s approach is affected bu some serious problems
beyond the possible numerical stability problems discussed in Sect. 3.

In Sect. 7 it is shown that rearrangements of the truncations (7.1) of the one-center
expansion (5.4) are semiconvergent with respect to the truncation order N if the prin-
cipal quantum number N of the Slater-type function is nonintegral. It follows from
the leading order asymptotic approximation (7.2) that the accuracy of these approxi-
mations first increases with increasing truncation order N , but for larger values of N
the accuracy decreases again, and in the limit of infinite truncation orders, everything
goes to pieces.

The situation is not nearly so well understood in the case of rearrangements of trun-
cations (7.3) of the k-dependent addition theorem (3.7). For finite truncation orders
N , these rearrangements are one-range addition theorems, but as N → ∞ they
converge to two-range addition theorems.

It makes sense to assume that the ultimate two-range nature of these rearrange-
ments becomes noticeable in integrals already for sufficiently large, but finite values
of N . Thus, it is conceivable that at least certain multicenter integrals containing
such rearranged truncations might turn out to be semiconvergent with respect to N .
For the moment, these considerations are essentially speculations, since substantial
mathematical knowledge is still lacking.

As is well known from the literature, the use of semiconvergent expansions can
offer computational benefits under favorable circumstances. In the case of Guseinov’s
rearranged truncations of one-center and two-center expansions this may also be the
case. However, the use of semiconvergent expansions or of other approximations,
whose limit of infinite truncation order either does not exist or has undesirable fea-
tures, clearly involves some risks. So, before using such an approximation in an actual
calculation, we firstly must try to understand the inherent risks, and secondly, we must
convince ourselves that we will be able to handle these risks. It would be extremely
negligent to ignore these risks and treat a semiconvergent expansion like a convergent
expansion.

The examples mentioned above or the ones given in Appendix E should suffice
to convince even a skeptic reader that the apparent convergence of the leading terms
of an infinite series alone does not prove anything. We also need some additional
mathematical insight indicating convergence.

Numerical demonstrations have obvious limitations. It is always desirable to aug-
ment them by sufficiently rigorous mathematical investigations. Unfortunately, rigor-
ous proofs are extremely difficult in a research topic as complex and computer oriented
as electronic structure theory. In the vast majority of all problems in electronic structure
theory, a rigorous mathematical analysis is out of reach and we have to be content with
numerical demonstrations, in spite of their obvious limitations and their capacity of
misleading us. However, the construction of addition theorems and their application in
multicenter integrals is a mathematical problem, and—as shown in this article—quite a
few things can be understood on the basis of mathematical considerations. Guseinov’s
strategy of relying entirely on numerical demonstrations without trying to understand
the underlying mathematics is not acceptable from a methodological point of view.
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A General aspects of series expansions

For the sake of simplicity, let us consider functions F : C → C. A series expan-
sion

∑∞
n=0 unUn(z) for such a function F(z) requires a sequence {un}∞n=0 of fixed

coefficient and a sequence {Un(z)}∞n=0 of known functions Un : C → C.
To make the expansion

∑∞
n=0 unUn(z) useful, it has to represent F(z) in some

sense. Thus, we assume that
∑∞

n=0 unUn(z) converges to F(z) according to some
specified convergence type and we write:

F(z) =
∞∑

n=0

un Un(z). (A.1)

Numerous different convergence types occur in practice. Important examples are
pointwise convergence, which is typical of classical complex analysis or also of two-
range addition theorems, convergence in the mean with respect to the norm of some
Hilbert space, which is typical of most one-range addition theorems, or even distribu-
tional or weak convergence in the sense of Schwartz [174].

Therefore, the indiscriminate use of the “=” sign for all convergence types is poten-
tially misleading since it suggests a uniqueness which does not exist. Depending on
the convergence type, an “=” sign can have a completely different meaning, or to put it
differently, series expansions of the type of (A.1) can have very different mathematical
properties. Moreover, different convergence types are in general incompatible, i.e., the
convergence of a series expansion for a given convergence type does not imply that
this series converges also with respect to another convergence type.

It is, however, overly restrictive to insist that a series expansion of the type of (A.1)
must converge in some sense to be practically useful. Divergent, but summable series
expansions are simply to useful to be discarded, not only in mathematics, but in partic-
ular in quantum physics (see for example [150] and references therein). In numerous
scientific applications, there is no alternative to the summation of divergent series.
A condensed review of divergent series and their summation can be found in [207,
Appendices A and B].

Let us now assume that we have a sequence of approximate expressions of the
following kind:

FN (z) =
N∑

n=0

u(N )n Un(z), N ∈ N0. (A.2)

The superscript N in u(N )n indicates that the coefficients may depend explicitly on the
summation limit N , i.e., we in general have u(N )n �= u(N+1)

n �= u(N+2)
n �= . . . for fixed

n, N ∈ N0.
Let us now also assume that the approximants FN (z) converge to F(z) as N → ∞

in some sense. This raises the question whether the resulting expression F(z) =
limN→∞ FN (z) constitutes an expansion of F(z) in terms of the functions {Un(z)}∞n=0.
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The answer is that this is in general not true. The convergence of the approximants
FN (z) to F(z) as N → ∞ only means that we can make the difference between FN (z)
and F(z), whose exact meaning depends on the convergence type, as small as we like
by increasing N as much as necessary. This does not guarantee that the coefficients
u(N )n in (A.2) have for all n ∈ N0 unique limits un = u(∞)

n = limN→∞ u(N )n . Thus,
the existence of a convergent sequence of approximants of the type of (A.2) does not
imply the existence of a series expansion of the type of (A.1).

B Glory and misery of power series

It is probably justified to claim that power series

f (z) =
∞∑

ν=0

f (ν)(z0)

ν! (z − z0)
ν =

∞∑

ν=0

cν (z − z0)
ν (B.1)

are the most important analytical tools not only in mathematical analysis, but also in
the mathematical treatment of scientific and engineering problems.

As is well known, power series can be differentiated term-by-term under relatively
mild conditions. Accordingly, it is an obvious idea to try to solve differential equa-
tions in terms of power series. A large part of special function theory consists of the
construction and analysis of power series solutions to the ordinary differential equa-
tions that are of relevance in mathematical physics. Since power series can also be
integrated term-by-term under very mild conditions, they are also indispensable for
the construction of explicit expressions for integrals involving functions that possess
power series representations.

While the usefulness of power series in analytical manipulations cannot be over-
emphasized, it is nevertheless also true that a power series representation for a given
function is at best a mixed blessing from a purely numerical point of view. The prob-
lem is that power series expansions converge in circles about the expansion point.
As is well known, the radius of such a circle of convergence is determined by the
location the closest singularity of the function under consideration. Thus, the radius
of convergence of a power series expansion can be zero, finite and infinite.

In general, a power series in z − z0 is numerically useful only if z and z0 differ
slightly, i.e., in the immediate vicinity of the expansion point z0. Then, a few terms
of the series normally suffice to produce excellent approximations. But close to the
boundary of its circle of convergence, the rate of convergence of such a power series
expansion can become prohibitively slow. In my opinion, the current popularity of
Padé approximants, which normally converge much more rapidly than the partials
sums from which they are constructed (see for example the monograph of Baker and
Graves-Morris [5] and references therein), is largely due to the combined effect of the
undeniable analytical usefulness of power series and their (very) limited usefulness as
computational tools.

A nonzero, but finite radius of convergence of a power series can also cause seri-
ous problems in integrals. As is well known, a series expansion for the integrand can
be integrated termwise if it converges uniformly for the whole integration interval.
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Otherwise, we have to be prepared that termwise integration either generates a wrong
result or even a divergent series expansion for the integral. Thus, if we want to replace
a part of an integrand by its power series expansion, we are on the safe side only if the
integration interval is completely contained in the circle of convergence. In particular
in the case of infinite or semi-infinite integration intervals, this is normally not the
case.

C Orthogonal expansions

The analyticity of a function f : C → C in the sense of complex analysis is undeniably
a highly desirable feature. In the interior of suitable subsets of C, f can be represented
by power series expansions which converge pointwise and uniformly, and it is also
comparatively easy to compute derivatives of f in this way. Nevertheless, it is often
advantageous to use instead of power series alternative expansions that converge in a
weaker sense.

Let V be an infinite dimensional vector space with inner product (·|·) : V ×V → C

and its corresponding norm ‖ · ‖ : V → R+ defined by ‖ f ‖ = ( f | f )1/2 with f ∈ V .
If every Cauchy sequence in V converges with respect to the norm ‖ · ‖ to an element
of V , then V is called a Hilbert space.

Let us now assume that f is an element of some Hilbert space H and that the func-
tions {ϕm}∞m=0 are linearly independent and complete in H . Then, we can construct
approximations

fM =
M∑

m=0

C (M)
m ϕm (C.1)

to f , where M is a finite integer. The expansion coefficients C (M)
m , which in general

depend on the summation limit M , are chosen in such a way that the mean square
deviation

‖ f − fM‖2 = ( f − fM | f − fM ) (C.2)

becomes minimal.
The finite approximation (C.1) converges to f as M → ∞ if (C.2) can be made as

small as we like by increasing M . It therefore looks natural to assume that f possesses
an infinite expansion

f =
∞∑

m=0

Cmϕm (C.3)

in terms of the linearly independent and complete functions {ϕm}∞m=0 with well defined

expansion coefficients Cm = limM→∞ C (M)
m .

As discussed in Appendix A, this naturally looking assumption is not necessar-
ily true. In general, the coefficients C (M)

m in (C.1) do not only depend on m, f , and
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{ϕm}∞m=0, but also on the summation limit M . It is not a priori clear whether the coef-

ficients C (M)
m in (C.1) possess well defined limits Cm = limM→∞ C (M)

m , or whether
an infinite expansion of the type of (C.3) exists. In fact, expansions of that kind may
or may not exist.

It is one of the central results of approximation theory that for arbitrary f ∈ H the
mean square deviation ‖ f − fM‖2 becomes minimal if the functions {ϕm}∞m=0 are not
only linearly independent and complete, but also orthonormal satisfying (ϕm |ϕm′) =
δmm′ for all m,m′ ∈ N0, and if the coefficients are chosen according to C (M)

m = (ϕm | f )
(see for example [24, Theorem 9 on p. 51]).

If the functions {ϕm}∞m=0 are complete and orthonormal in the Hilbert space H and

if the expansion coefficients in (C.1) are chosen according to C (M)
m = (ϕm | f ), then

the expansion coefficients do not depend on M . Thus, the limit M → ∞ is possible,
and f ∈ H possesses an infinite series expansion

f =
∞∑

m=0

(ϕm | f ) ϕm (C.4)

and this expansion converges in the mean with respect to the norm ‖ · ‖ of H .
The fact, that the completeness of a function set {ϕm}∞m=0 in an infinite dimensional

Hilbert space H alone does not suffice to guarantee the existence of expansions of
the type of (C.3), is highly consequential. Nevertheless, it is occasionally overlooked,
although this insufficiency is well documented both in the mathematical literature (see
for example [24, Theorem 10 on p. 54] or [137, Section 1.4]) as well as in the literature
on electronic structure calculations [143–148]). Horrifying examples of nonorthogo-
nal expansions with pathological properties can be found in [144, Section III.I].

If the Hilbert space H is an infinite dimensional vector space consisting of func-
tion f, g : C → C, the inner product ( f |g) of H is usually identified with an integral∫ b

a w(z)[ f (z)]∗g(z)dz, where w(z) is an appropriate positive weight function. More-
over, the complete orthonormal functions {ϕm}∞m=0 in H are normally related to a
suitable subclass {Pm(z)}∞m=0 of the classical orthogonal polynomials of mathemati-
cal physics, as specified by the integration limits a and b and the weight functionw(z).
In this case, the general orthogonal expansion (C.4) boils down to the expansion of a
function f (z) in terms of orthogonal polynomials:

f (z) =
∞∑

m=0

Cm Pm(z). (C.5)

It is generally accepted that orthogonal expansions are extremely useful mathemat-
ical tools and that they have many highly advantageous features. This is, however, not
the whole truth, in particular if we want to approximate functions. Hilbert space theory
only guarantees that an orthogonal expansion converges in the mean with respect to
the corresponding norm ‖ · ‖, but not necessarily pointwise or even uniformly. Thus,
convergence in the mean is a comparatively weak form of convergence, and orthog-
onal expansions are not necessarily a good choice if we are predominantly interested
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in the local properties of a function. However, convergence in the mean is usually
completely satisfactory for the evaluation of integrals.

D Generalized Laguerre polynomials

The surface spherical harmonics Y m
� (θ, φ) are complete and orthonormal with respect

to an integration over the surface of the unit sphere in R
3 (an explicit proof can for

instance be found in [164, Section III.7.6]). Since more complex Hilbert spaces can
be constructed by forming tensor products of simpler Hilbert spaces (see for example
[164, Section II.6.5]), we only have to find suitable radial functions that are complete
and orthogonal with respect to an integration from 0 to ∞ (see also [147, Lemma 6
on p. 31]). Thus, we more or less automatically arrive at function sets based on the
generalized Laguerre polynomials.

The generalized Laguerre polynomials L(α)n (z) with �(α) > −1 and n ∈ N0 are
orthogonal with respect to an integration over the positive real semiaxis [0,∞) with
weight function w(z) = zα exp(−z). In the mathematical literature, they are defined
either via the Rodrigues relationship

L(α)n (z) = z−α ez

n!
dn

dzn

[
e−z zn+α] (D.1)

or as a terminating confluent hypergeometric series 1 F1:

L(α)n (z) = (α + 1)n
n! 1 F1(−n;α + 1; z) = (α + 1)n

n!
n∑

ν=0

(−n)ν
(α + 1)ν

zν

ν! . (D.2)

The generalized Laguerre polynomials satisfy for �(α) > −1 and m, n ∈ N0 the
orthogonality relationship

∞∫

0

zα e−z L(α)m (z) L(α)n (z) dz = �(α + n + 1)

n! δmn . (D.3)

Accordingly, the polynomials

L (α)
n (z) =

[
n!

�(α + n + 1)

]1/2

L(α)n (z), n ∈ N0, α > −1, (D.4)

are for �(α) > −1 orthonormal with respect to an integration over the interval [0,∞)

involving the weight function zα exp(−z):

∞∫

0

e−z zα L (α)
m (z)L (α)

n (z) dz = δmn . (D.5)
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Alternatively, we can also use the functions

�(α)n (z) =
[

n!
�(α + n + 1)

]1/2

e−z/2 zα/2 L(α)n (z), n ∈ N0, (D.6)

which are for �(α) > −1 orthonormal with respect to an integration over the interval
[0,∞):

∞∫

0

�(α)m (z)�(α)n (z) dz = δmn . (D.7)

The completeness of the generalized Laguerre polynomials in the weighted Hilbert
space

L2
e−z zα

([0,∞)
) =

⎧
⎨

⎩ f : [0,∞) → C

∣∣∣∣∣∣

∞∫

0

e−z zα | f (z)|2 dz < ∞
⎫
⎬

⎭ (D.8)

is a classic result of mathematical analysis (see for example [137, p. 33],
[172, pp. 349–351], or [189, pp. 235–238]).

In general, Laguerre expansions converge only in the mean, but not necessarily
pointwise (see for example [4]). Additional conditions, which a function has to satisfy
in order to guarantee that its Laguerre expansion converges pointwise, were discussed
by Szegö [186, Theorem 9.1.5 on p. 246] (see also [29, Appendix]).

In this article, exclusively the mathematical notation is used. A different conven-
tion for Laguerre polynomials is frequently used in the quantum mechanical literature.
For example, Bethe and Salpeter [11, Eq. (3.5)] define associated Laguerre functions[
Lm

n (z)
]

BS with n,m ∈ N0 via the Rodrigues-type relationships

[
Lm

n (z)
]

BS = dm

dzm

[
Ln(z)

]
BS, (D.9a)

[
Ln(z)

]
BS = ez dn

dzn

[
e−z zn]. (D.9b)

Comparison of (D.1) and (D.9b) implies:

L(m)n (z) = (−1)m

(n + m)!
[
Lm

n+m(z)
]

BS. (D.10)

The convention of Bethe and Salpeter [11] is also used in the books by Condon and
Shortley [21, Eqs. (6) and (9) on p. 115] and by Condon and Odabaşi [20, Eq. (2) on
p. 189] as well as in the numerous articles by Guseinov et al.

In my opinion, the use of associated Laguerre functions defined by (D.9) is not rec-
ommendable. It follows from (D.10) that these functions cannot express generalized
Laguerre polynomials L(α)n with nonintegral superscripts α. This is both artificial and
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unnecessary. For example, the eigenfunctions�m
n,�(β, r) of the Hamiltonian β−2∇2 −

β2r2 of the three-dimensional isotropic harmonic oscillator contain generalized
Laguerre polynomials in r2 with half-integral superscripts (see for example [194,
Eq. (5.4)] and references therein).

E Semiconvergence

If the sum of the leading terms of an infinite series seems to approach the correct
limit, it looks natural to conclude that increasing the number of terms will improve
the accuracy of the approximation, and that ultimately the partial sums will converge
to the correct limit. Unfortunately, this assumption is overly optimistic and in spite of
its apparent plausibility not necessarily true.

Many series are known whose partial sums initially seem to converge. If however,
further terms are included, the accuracy decreases, and ultimately the sequence of
partial sums diverges. In the literature, this phenomenon is well established and usu-
ally called semiconvergence (see for example [162, p. 2, Footnote†]). To the best of
my knowledge, this terminology was introduced by Stieltjes [185] already in 1886.

Semiconvergence is best known in connection with factorially divergent asymptotic
inverse power series for special functions. In Arfken’s book [3, Chapter 5.10], one can
find a comprehensive discussion of the semiconvergence of the divergent asymptotic
series of the incomplete gamma function �(a, z) [163, Eq. (8.11.2)] and its special
case, the asymptotic series for the exponential integral E1(z) [163, Eq. (6.12.1)]. In
my opinion, Arfken’s treatment is well suited as a first introduction to this topic. Other
examples of semiconvergent series are the factorially divergent asymptotic series for
the complementary error function erfc(z) [163, Eq. (7.12.1)], and the modified Bessel
and Whittaker functions of the second kind Kν(z) and Wκ,μ(z), respectively [163,
Eqs. (10.40.4) and (13.19.3)].

If the argument of such a divergent asymptotic inverse power series is sufficiently
large, then the truncation of such a divergent series in the vicinity of the minimal term
can lead to excellent approximations to the function it represents. Nevertheless, these
partial sums diverge if further terms beyond the minimal term are included (see for
example [34, Figure 2.2 on p. 35]).

Accordingly, the accuracy, which can be obtained by truncating a semiconvergent
inverse power series in the vicinity of the minimal term, depends crucially on the
magnitude of the argument. If the argument is large, excellent approximations can
often be obtained. The situation is not so good if the argument is small, because then
the truncation of a semiconvergent series can only provide relatively crude approx-
imations. But even for small arguments, it is often possible to obtain very accurate
approximations by using the partial sums of a semiconvergent series as input data in
nonlinear sequence transformations [198,212].

Semiconvergent series occur also quite abundantly in quantum mechanical pertur-
bation expansions. For example, Ahlrichs [2] showed that the total energy of interacting
molecular systems A and B can be expressed by a semiconvergent series, the so called
1/R-expansion.
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Other phenomena closely resembling semiconvergence are also known. Baumel,
Crocker, and Nuttall [7] showed that in the case of scattering calculations with complex
basis functions low order approximations can produce good results although the whole
scheme ultimately diverges, and Gautschi [32] observed initial apparent convergence
to the wrong limit in the case of continued fractions for Kummer functions.
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